Skip to main content
Log in

Preparation, Structure and Properties of Copper-Based Composites with Additions of Fullerenes and Fullerene Soot

  • Published:
Metal Science and Heat Treatment Aims and scope

Copper–fullerene/fullerene soot composites are prepared using different processes. Structure, hardness, tribological properties, and thermal conductivity of the composites are studied. It is shown that mixing at the molecular level makes it possible to obtain copper–fullerene/fullerene soot composites with more uniform carbon distribution and better combination of properties than mechanical mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. I. Rudskoi, K. N. Volkov, S. Yu. Kondrat’ev, and Yu. A. Sokolov, Physical Processes and Technology for Preparing Metal Powders from a Melt [in Russian], St. Petersburg Politech. Univ. (2018).

  2. A. I. Rudskoi, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663–1669 (2015).

    Article  CAS  Google Scholar 

  3. A. I. Rudskoi, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1 – 2), 27 – 32 (2016).

  4. Yu. A. Sokolov, N. V. Pavlushin, and S. Y. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).

    Article  Google Scholar 

  5. V. N. Kokorin, A. I. Rudskoi, V. I. Filimonov, et al., Theory and Practice of Pressing heterophase Moistened Mechanical Mixtures Based on Iron [in Russian], Izd. UlGTU, Ul’yanovsk (2012).

    Google Scholar 

  6. L. Wang, Y. Cui, S. Yang, et al., “Microstructure and properties of carbon nanosheet_copper composites processed by particle-assisted shear exfoliation,” RSC Adv., 5, 19321 – 19328 (2015).

    Article  CAS  Google Scholar 

  7. T. Varol and A. Canakci, “The effect of type and ratio of reinforcement on the synthesis and characterization Cu based nanocomposites by flake powder metallurgy,” J. Alloys Compd., 649, 1066 – 1074 (2015).

    Article  CAS  Google Scholar 

  8. P. Jenei, E. Yoon, J. Gubicza, et al., “Microstructure and hardness of copper-carbon nanotube composites consolidated by high pressure torsion,” Mater. Sci. Eng. A, 528, 4690 – 4695 (2011).

    Article  Google Scholar 

  9. M. R. Akbarpour, S. Alipour, M. Farvizi, and H. S. Kim, “Mechanical, tribological and electrical properties of Cu-CNT composites fabricated by flake powder metallurgy method,” Arch. Civil Mechan. Eng., 19, 694 – 706 (2019).

    Article  Google Scholar 

  10. X. Wang, B. Guo, S. Nia, et al., “Acquiring well balanced strength and ductility of Cu_CNTs composites with uniform dispersion of CNTs and strong interfacial bonding,” Mater. Sci. Eng. A, 733, 144 – 152 (2018).

    Article  CAS  Google Scholar 

  11. S. I. Cha, K. T. Kim, S. N. Arshad, et al., “Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing,” Adv. Mater., 17, 1377 – 1381 (2005).

    Article  CAS  Google Scholar 

  12. L. Wang, Z. Yang, Y. Cui, et al., “Graphene-copper composite with micro-layered grains and ultrahigh strength,” Sci. Rep., 7, 41896 (2017).

    Article  CAS  Google Scholar 

  13. K. T. Kim, S. I. Cha, and S. H. Hong, “Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites,” Mater. Sci. Eng. A, 46–50, 449 – 451 (2007).

    Google Scholar 

  14. J. Hwang, T. Yoon, S. H. Jin, et al., “Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process,” Adv. Mater., 25(46), 6724 – 6729 (2013).

    Article  CAS  Google Scholar 

  15. S. K. Singhal, M. L. Lata, S. R. Kabi, and R. B. Mathur, “Synthesis of Cu/CNTs nanocomposites for antimicrobial activity,” Adv. Nat. Sci. Nanosci. Nanotechnol., 3, 045011 (10 pp.) (2012).

  16. https://dadec60.lookchem.com site company Suzhou Dade Carbon Nanotechnology Co: Electronic source.

  17. T. Larionova, T. Koltsova, Y. Fadin, and O. Tolochko, “Friction and wear of copper–carbon nanofibers compact composites prepared by chemical vapor deposition,” Wear, 319(1 – 2), 118 – 122 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bobrynina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 70 – 75, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrynina, E.V., Larionova, T.V., Kol’tsova, T.S. et al. Preparation, Structure and Properties of Copper-Based Composites with Additions of Fullerenes and Fullerene Soot. Met Sci Heat Treat 62, 70–75 (2020). https://doi.org/10.1007/s11041-020-00514-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00514-3

Key words

Navigation