Skip to main content
Log in

Transfer of Diagonals in a Rhombus: Elementary Act of Polymorphic Transformation. Analysis of the Energy Threshold of Transformation in Metals

  • 90 YEARS OF THE DEPARTMENT OF MATERIALS SCIENCE OF THE N. É. BAUMAN MOSCOW STATE TECHNICAL UNIVERSITY
  • Published:
Metal Science and Heat Treatment Aims and scope

We propose an atomistic description of polymorphic transformations in metal alloys, according to which an elementary act of transformation is reduced to the transfer of diagonals of a rhombus formed by two triangles. Metallic atoms are located in the corners of these triangles, and their common edge is transferred (i.e., turns into the long diagonal of rhombus). We estimated the energy barrier of polymorphic transformation (transfer of the diagonals) for various types of filling of the corners with iron, chromium, and manganese atoms in different combinations. The energy threshold is computed by using the Morse pair potential. The numerical parameters of the function approximating the potential are calibrated by the experimental values of the energy of sublimation and the temperature dependences of the elastic constants of iron, chromium, and manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. E. C. Bain, “The nature of martensite,” Trans. AIME,70, 25 – 46 (1924).

    Google Scholar 

  2. G. Kurdjumov and G. Sachs, “Uber den Mechanismus der Stahl-hartung,” Z. Physik,64(5–6), 325 – 343 (1930).

    Article  Google Scholar 

  3. C. M. Wayman, Introduction to the Crystallography of Martensite Transformation, Macmillan, New York (1964).

    Google Scholar 

  4. G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  5. E. Pereloma and D. Edmonds, Phase Transformations in Steels, Vol. 2, Woodheard Publ., Oxford (2012).

    Book  Google Scholar 

  6. B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “Local criterion of correctness of a system of points,” Dokl. Akad. Nauk SSSR, 227, 19 – 21 (1976).

    Google Scholar 

  7. V. S. Kraposhin, A. L. Talis, and J.-M. Dubois, “Structural realization of the polytope approach for the geometrical description of the transition of a quasicrystal into a crystalline phase,” Phys. Condensed Matter, 14(9), 8987 – 8996 (2002).

    Article  CAS  Google Scholar 

  8. B. K. Vainshtein, “Methods of structural crystallography,” in: Modern Crystallography, Vol. 1: Symmetry of Crystals [in Russian], Nauka, Moscow (1979), pp. 163 – 164.

  9. V. S. Kraposhin, M. N. Pankova, A. L. Talis, and Yu. A. Freiman, “An application of a polytope (4D-polyhedron) concept for the description of polymorphic transitions: iron martensite and solid oxygen,” J. Phys. IV. (Proceedings), France, 112, 119 – 122 (2003).

  10. A. I. Bobenko, U. Pinkall, and B. A. Springborn, “Discrete conformal maps and ideal hyperbolic polyhedra,” Geom. Topol., 19, 2155 – 2215 (2015).

    Article  Google Scholar 

  11. B. L. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Editorial, Moscow (2001).

    Google Scholar 

  12. E. Lord, Symmetry and Pattern in Projective Geometry, Springer, London (2012).

    Google Scholar 

  13. V. S. Kraposhin, A. L. Talis, and Y. J. Wang, “Description of polymorphic transformations of Ti and Zr in the framework of the algebraic geometry,” Mater. Sci. Eng., Ser. A, 438 – 440, 85 – 89 (2006).

  14. A. Talis and V. Kraposhin, “Finite noncrystallographic groups, 11-vertex equi-edged triangulated clusters and polymorphic transformations in metals,” Foundat. Crystallogr., 70(6), 616 – 625 (2014).

    CAS  Google Scholar 

  15. S. Yu. Kondrat’ev, V. S. Kraposhin, G. P. Anastasiadi, and A. L. Talis, “Experimental observation and crystallographic description of Mg7C3 carbide transformation in Fe – Cr – Ni – C HP-type alloy,” Acta Mater., 100, 275 – 281 (2015).

    Article  Google Scholar 

  16. V. Kraposhin, I. Jakovleva, L. Karkina, et al., “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Comp., 577(1), S30 – S36 (2013).

    Article  CAS  Google Scholar 

  17. J. E. Jones, “On the determination of molecular fields. II. From the equation of state of a gas,” Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci., 106(738), 463 – 477 (1924).

    Article  CAS  Google Scholar 

  18. S. Zhen and G. J. Davies, “Calculation of the Lennard–Jones n – m potential energy parameters for metals,” Phys. Status Solidi (A), 78(2), 595 – 605 (1983).,

    Article  CAS  Google Scholar 

  19. H. Heinz, R. A. Vaia, B. L. Farmer, and R. R. Naik, “Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12 – 6 and 9 – 6 Lennard–Jones potentials,” J. Phys. Chem., Ser. C, 112(44), 17281 – 17290 (2008).

    Article  CAS  Google Scholar 

  20. D. G. Pettifor, Bonding and Structure of Molecules and Solids, Clarendon, Oxford (1996).

    Google Scholar 

  21. P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Phys. Rev., 34(1), 57 (1929).

  22. P. Zhang, Y. Huang, P. H. Geubelle, et al., “The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials,” Int. J. Solids Struct., 39(13), 3893 – 3906 (2002).

    Article  Google Scholar 

  23. R. C. Lincoln, K. M. Koliwad, and P. B. Ghate, “Morse-potential evaluation of second- and third-order elastic constants of some cubic metals,” Phys. Rev., 157(3), 463 (1967).

  24. D. G. Pettifor, “Electron theory of metals,” in: Physical Metallurgy, Vol. 1, North-Holland, Amsterdam (1996), pp. 47 – 133.

  25. P. D. Desai, “Thermodynamic properties of iron and silicon,” J. Phys. Chem. Ref. Data, 15(3), 967 – 983 (1986).

    Article  CAS  Google Scholar 

  26. D. S. Dickson, J. R. Myers, and R. K. Saxer, “The vapor pressure and heat of sublimation of chromium,” J. Phys. Chem., 69(11), 4044 – 4046 (1965).

    Article  CAS  Google Scholar 

  27. T. C. Ehlert, “A mass spectrometric study of the sublimation of manganese,” J. Inorg. Nucl. Chem., 31(9), 2705 – 2710 (1969).

    Article  CAS  Google Scholar 

  28. Z. Yang, Q. Wang, X. Shan, et al., “DFT study of Fe – Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth,” J. Chem. Phys., 142(7), 074306-1 – 074306-8 (2015).

  29. R. Singh and P. Kroll, “Structural, electronic, and magnetic properties of 13-, 55-, and 147-atom clusters of Fe, Co, and Ni: A spin-polarized density functional study,” Phys. Rev., Ser. B, 78(24), 245404-1 – 245404-12 (2008).

  30. C. Zener, “Theory of D0 for atomic diffusion in metals,” J. Appl. Phys., 22(4), 372 – 375 (1951).

    Article  CAS  Google Scholar 

  31. J. W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Amsterdam (2002).

    Google Scholar 

  32. H. M. Ledbetter and R. P. Reed, “Elastic properties of metals and alloys. I. Iron, nickel, and iron-nickel alloys,” J. Phys. Chem. Ref. Data, 2(3), 531 – 618 (1973).

    Article  CAS  Google Scholar 

  33. K. W. Katahara, M. Nimalendran, M. H. Manghnani, and E. S. Fisher, “Elastic moduli of paramagnetic chromium and Ti – V – Cr alloys,” J. Phys., Ser. F: Metal Phys., 9, 2167 – 2176 (1979).

  34. J. T. Lenkkeri and E. E. Lahteenkorva, “An investigation of elastic moduli of vanadium-chromium alloys,” J. Phys., Ser. F: Metal Phys., 8(8), 1643 – 1651 (1978).

    Article  CAS  Google Scholar 

  35. W. Köster, “Die Tenperaturabhängïgkeit des Elasticitätsmoduls reiner Metale,” Z. Metallkunde, 39, 1 – 12 (1948).

    Google Scholar 

  36. M. Rosen, “Elastic moduli and ultrasonic attenuation of polycrystalline α-Mn from 4.2 to 300 K,” Phys. Rev., 165, 357 – 359 (1968).

    Article  CAS  Google Scholar 

  37. N. D. Tripathi, K. Shanker, and R. P. Khare, “The Anderson– Grüneisen parameter for 16 crystals of cubic symmetry,” J. Appl. Phys., 49, 4282 – 4283 (1978).

    Article  CAS  Google Scholar 

  38. W. A. Harrison, Elementary Electronic Structure, World Scientific, Singapore (1999).

  39. M. Hilbert, “Diffusion and interface control of reactions in alloys,” Metal. Trans., Ser. A, 6(1), 5 – 19 (1975).

    Article  Google Scholar 

  40. G. P. Krielaart and S. Van der Zwaag, “Kinetics of γ → α phase transformation in Fe – Mn alloys containing low manganese,” Mater. Sci. Technol., 14, 10 – 18 (1998).

    Article  CAS  Google Scholar 

  41. D. A. Mirzaev, K. Yu. Okishev, V. M. Schastlivtsev, et al., “Transformation of austenite into ferrite in the ‘classical’ Fe – 9% Mn alloy. Analysis of the literature data. Investigations of the authors,” Izv. Chelyabinsk. Nauch. Tsentr, No. 2, 27 – 32, 33 – 38 (1998).

  42. V. S. Kraposhin, A. L. Talis, and M. I. Samoilovich, “Axial (helical) substructures determined by the root lattice E8 as generating clusters of the condensed phases,” J. Noncrystal. Solids, 353, 3279 – 3284 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 8 – 17, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, M.Y., Kraposhin, V.S., Talis, A.L. et al. Transfer of Diagonals in a Rhombus: Elementary Act of Polymorphic Transformation. Analysis of the Energy Threshold of Transformation in Metals. Met Sci Heat Treat 62, 109–118 (2020). https://doi.org/10.1007/s11041-020-00522-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00522-3

Key words

Navigation