Skip to main content
Log in

Modification of Organosilicon Compounds with Al2O3 Nanoparticles in Order To increase Radiation Resistance

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect on optical properties of modifying KO-921 organosilicon compound with Al2O3 nanoparticles in the concentration range of 0.5 – 7 wt.% after irradiation with electrons is studied. Optimum values of nanoparticle concentration in order to improve compound radiation properties are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here and subsequently throughout the text element content is given in weight fractions expressed as a %.

References

  1. X. Zhu, J. Zhou, J. Zhu, et al., “Structural characterization and optical properties of perovskite ZnZrO3 nanoparticles,” J. Am. Ceram. Soc., 97, 1987 – 1992 (2014).

    Article  CAS  Google Scholar 

  2. J. Li. J. Yang, X. Li, and Z. Chai, “Size dependent radiation-stability of ZnO and TiO2 particles,” Dyes and Pigments, 164, 87 – 90 (2019).

    Article  Google Scholar 

  3. M. Mikhailov, V. Neschimenko, and A. Sokolovskiy, “Features of degradation and recovery of the optical properties of coatings based on ZnO powder modified with nanoparticles after irradiation,” Radiation Effects and Defects in Solids, 173(3–4), 198 – 209 (2018).

    Article  CAS  Google Scholar 

  4. A. Tyutnev, V. Saenko, E. Pozhidaev, and R. Ikhsanov, “Experimental and theoretical studies of radiation-induced conductivity in spacecraft polymers,” IEEE Trans. Plasma Sci., 43(9), 2915 – 2924 (2015).

    Article  CAS  Google Scholar 

  5. V. Saenko, A. Tyutnev, A. Abrameshin, and G. Belik, “Computer simulations and experimental verification of the nanoconductivity concept for the spacecraft electronics,” IEEE Trans. Plasma Sci., 45(8), 1843 – 1846 (2017).

    Article  CAS  Google Scholar 

  6. D. G. Gilmore, Spacecraft Thermal Control Handbook. Vol. 1: Fundamental Technologies, American Institute of Aeronautics and Astronautics (AIAA), Reston, Virginia (2002).

  7. V. A. Novikova, I. I. Popkova, and Yu. V. Poruchikova, Russian Patent No. 2443738 of 02.27.2012. Thermal Control Coating Composition [in Russian], publ. 02.27.2012.

  8. E. A. Afanas’ev and I. V. Merzlyakova, Russian patent No. 2435670 of 12.110.2011. Method for Preparing a Protective Coating of Carbon-Carbon Composite Material [in Russian], publ. 12.10.2011.

  9. M. M. Mikhailov, V. V. Neshchimenko, A. V. Grigorevskiy, et al., “Radiation stability of silicon-organic varnish modified with nanoparticles,” Polymer Degrad. Stab., 153, 185 – 191 (2018).

    Article  CAS  Google Scholar 

  10. V. K. Larin, V. M. Kondakov, E. N. Malyyi, et al., “Plasma chemical method for preparing ultrafine (nano) metal oxide powders and promising application areas,” Izv. Vysh. Uchebn. Zaved., Tsvetn. Met., No. 5, 59 – 64 (2003).

  11. L. G. Kositsyn, M. M. Mikhailov, N. Ya. Kuznetsov, and M. I. Dvoretskii, “Apparatus for study of diffuse-reflection and luminescence spectra of solids in vacuum,” Instruments and Experimental Techniques, 28(4), pt. 2, 929 – 932 (1985).

  12. ASTM E490–90 Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (2005).

  13. ASTM E903–96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres (2005).

  14. M. M. Mikhailov, Radiation and Space Material Science [in Russian], Izd. Tomsk. Univ., Tomsk (2008).

    Google Scholar 

  15. N. Grassie and G. Scott, Polymer Degradation and Stabilization, Cambridge University Press, Cambridge (1985).

    Google Scholar 

  16. S. E. Vaisberg and V. A. Kargin, Polymer Radiation Chemistry [in Russian], Nauka, Moscow (1973).

    Google Scholar 

Download references

Work was carried out with financial support of the RF Ministry of Science and Higher education. State assignment No. 1.8575.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mikhailov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 80 – 84, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.M., Yur’ev, S.A., Bakhtaulova, A.S. et al. Modification of Organosilicon Compounds with Al2O3 Nanoparticles in Order To increase Radiation Resistance. Met Sci Heat Treat 62, 81–85 (2020). https://doi.org/10.1007/s11041-020-00516-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00516-1

Key words

Navigation