Skip to main content
Log in

Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Statistical shape analysis of lung is a reliable alternative method for diagnosing pulmonary diseases such as tuberculosis (TB). The 2D contour-based lung shape analysis is investigated and developed using Fourier descriptors (FDs). The proposed 2D lung shape analysis is carried out in threefold: (1) represent the normal and the abnormal (i.e. pulmonary tuberculosis (PTB)) lung shape models using Fourier descriptors modeling (FDM) framework from chest X-ray (CXR) images, (2) estimate and compare the 2D inter-patient lung shape variations for the normal and abnormal lungs by applying principal component analysis (PCA) techniques, and (3) describe the optimal type of contour-based feature vectors to train a classifier in order to detect TB using one publicly available dataset—namely the Montgomery dataset. Since almost all of the previous works in lung shape analysis are content-based analysis, we proposed contour-based lung shape analysis for statistical modeling and feature description of PTB cases. The results show that the proposed approach is able to explain more than 95% of total variations in both of the normal and PTB cases using only 6 and 7 principal component modes for the right and the left lungs, respectively. In case of PTB detection, using 138 lung cases (80 normal and 58 PTB cases), we achieved the accuracy (ACC) and the area under the curve (AUC) of 82.03% and 88.75%, respectively. In comparison with existing state-of-art studies in the same dataset, the proposed approach is a very promising supplement for diagnosis of PTB disease. The method is robust and valuable for application in 2D automatic segmentation, classification, and atlas registration. Moreover, the approach could be used for any kind of pulmonary diseases.

Contour-based lung shape analysis in order to detect tuberculosis: modeling and feature description

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S, Thoma G, McDonald CJ (2013) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33(2):577–590

    PubMed  Google Scholar 

  2. Zhang Y, Clark A, Kumar H, Milne D, Wilsher M, Bartholmai B, Tawhai M (2018) Idiopathic pulmonary fibrosis: a study using volumetric imaging and functional data in a computational lung model. In: A73. DIFFUSE PARENCHYMAL LUNG DISEASE: NOVEL MECHANISMS, BIOMARKERS, AND THERAPEUTICS. American Thoracic Society, pp A2363-A2363

  3. Coppini G, Miniati M, Paterni M, Monti S, Ferdeghini EM (2007) Computer-aided diagnosis of emphysema in COPD patients: neural-network-based analysis of lung shape in digital chest radiographs. Med Eng Phys 29(1):76–86

    PubMed  Google Scholar 

  4. El-Baz A, Nitzken M, Khalifa F, Elnakib A, Gimel’farb G, Falk R, El-Ghar MA 3D shape analysis for early diagnosis of malignant lung nodules. In: Biennial International Conference on Information Processing in Medical Imaging, 2011. Springer, pp 772–783

  5. Sundaram TA, Avants BB, Gee JC A dynamic model of average lung deformation using capacity-based reparameterization and shape averaging of lung MR images. In: International conference on medical image computing and computer-assisted intervention, 2004. Springer, pp 1000–1007

  6. Hayashi K, Aziz A, Ashizawa K, Hayashi H, Nagaoki K, Otsuji H (2001) Radiographic and CT appearances of the major fissures. Radiographics 21(4):861–874

    CAS  PubMed  Google Scholar 

  7. Aldur M, Denk C, Celik H, Tasçioglu A (1997) An accessory fissure in the lower lobe of the right lung. Morphologie: Bulletin de l'Association des anatomistes 81(252):5–7

    CAS  PubMed  Google Scholar 

  8. Meenakshi S, Manjunath K, Balasubramanyam V (2004) Morphological variations of the lung fissures and lobes. Indian J Chest Dis Allied Sci 46:179–182

    CAS  PubMed  Google Scholar 

  9. Quadros LS, Palanichamy R, D'souza AS (2014) Variations in the lobes and fissures of lungs-a study in South Indian lung specimens. Eur J Anat 18(1):16–20

    Google Scholar 

  10. Organisation WH (2018) Global tuberculosis report 2018. World Health Organization, France

    Google Scholar 

  11. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K, Singh RK, Antani S (2013) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33(2):233–245

    PubMed  Google Scholar 

  12. Jaeger S, Karargyris A, Antani S, Thoma G Detecting tuberculosis in radiographs using combined lung masks. In: 2012 Annual international conference of the IEEE engineering in medicine and biology society, 2012. IEEE, pp 4978–4981

  13. Van Ginneken B, Romeny BTH, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20(12):1228–1241

    PubMed  Google Scholar 

  14. Van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002) Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21(2):139–149

    PubMed  Google Scholar 

  15. Afzali A, Mofrad FB, Pouladian M (2018) Inter-patient modelling of 2D lung variations from chest X-ray imaging via Fourier descriptors. J Med Syst 42(11):233

    PubMed  Google Scholar 

  16. Mofrad FB, Zoroofi RA, Tehrani-Fard AA, Akhlaghpoor S, Sato Y (2014) Classification of normal and diseased liver shapes based on spherical harmonics coefficients. J Med Syst 38(5):20

    PubMed  Google Scholar 

  17. Babapour Mofrad F, Aghaeizadeh Zoroofi R, Abbaspour Tehrani-Fard A, Akhlaghpoor S, Hori M, Chen Y-W, Sato Y (2010) Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry. Radiat Prot Dosim 141(2):140–148

    CAS  Google Scholar 

  18. Shen L, Farid H, McPeek MA (2009) Modeling three-dimensional morphological structures using spherical harmonics. Evolution 63(4):1003–1016

    PubMed  PubMed Central  Google Scholar 

  19. Dillenseger J-L, Guillaume H, Patard J-J (2006) Spherical harmonics based intrasubject 3-D kidney modeling/registration technique applied on partial information. IEEE Trans Biomed Eng 53(11):2185–2193

    PubMed  PubMed Central  Google Scholar 

  20. Orozco HM, Villegas OOV, Sánchez VGC, Domínguez HJO, Alfaro MJN (2015) Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed Eng Online 14(1):9

    Google Scholar 

  21. Dhara AK, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N (2016) A combination of shape and texture features for classification of pulmonary nodules in lung CT images. J Digit Imaging 29(4):466–475

    PubMed  PubMed Central  Google Scholar 

  22. Melendez J, Sánchez CI, Philipsen RH, Maduskar P, Dawson R, Theron G, Dheda K, Van Ginneken B (2016) An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 6:25265

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Santosh K, Vajda S, Antani S, Thoma GR (2016) Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J Comput Assist Radiol Surg 11(9):1637–1646

    CAS  PubMed  Google Scholar 

  24. Vajda S, Karargyris A, Jaeger S, Santosh K, Candemir S, Xue Z, Antani S, Thoma G (2018) Feature selection for automatic tuberculosis screening in frontal chest radiographs. J Med Syst 42(8):146

    PubMed  Google Scholar 

  25. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Google Scholar 

  26. Ataer-Cansizoglu E, Bas E, Kalpathy-Cramer J, Sharp GC, Erdogmus D (2013) Contour-based shape representation using principal curves. Pattern Recogn 46(4):1140–1150

    Google Scholar 

  27. Persoon E, Fu K-S (1986) Shape discrimination using Fourier descriptors. IEEE Trans Pattern Anal Mach Intell 3:388–397

    Google Scholar 

  28. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans Comput 100(3):269–281

    Google Scholar 

  29. Lahmiri S (2017) Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomedical Signal Processing and Control 31:148–155

    Google Scholar 

  30. Lahmiri S (2016) Image characterization by fractal descriptors in variational mode decomposition domain: application to brain magnetic resonance. Physica A: Statistical Mechanics and its Applications 456:235–243

    Google Scholar 

  31. Cosgriff R (1960) Identification of shape, Ohio State Univ. Res Foundation, Columbus, Rep, pp 820–811

    Google Scholar 

  32. Bohi A, Prandi D, Guis V, Bouchara F, Gauthier J-P (2017) Fourier descriptors based on the structure of the human primary visual cortex with applications to object recognition. Journal of Mathematical Imaging and Vision 57(1):117–133

    Google Scholar 

  33. Afzali A, Mofrad FB, Pouladian M Feature selection for contour-based tuberculosis detection from chest X-ray images. In: 2019 26th National and 4th International Iranian Conference on Biomedical Engineering (ICBME), 2019. IEEE, pp 194–198

  34. Zhang D, Lu G A comparative study on shape retrieval using Fourier descriptors with different shape signatures. In: Proc. of international conference on intelligent multimedia and distance education (ICIMADE01), 2001. pp 1–9

  35. Kumar M, Singh K (2018) Retrieval of X-ray images using scale invariant feature transform and combination of region and elliptic Fourier descriptors feature. Journal of Medical Imaging and Health Informatics 8(4):755–760

    Google Scholar 

  36. Rohlf FJ, Archie JW (1984) A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Syst Zool 33(3):302–317

    Google Scholar 

  37. Bertrand O, Queval R, Maître H (1982) Shape interpolation using Fourier descriptors with application to animation graphics. Signal Process 4(1):53–58

    Google Scholar 

  38. Shen L, Ford J, Makedon F, Saykin A Hippocampal shape analysis: surface-based representation and classification. In: Medical Imaging 2003: Image Processing, 2003. International Society for Optics and Photonics, pp 253–264

  39. Cootes T, Baldock E, Graham J (2000) An introduction to active shape models. Image processing and analysis:223–248

  40. Huang H, Makedon F, McColl R High dimensional statistical shape model for medical image analysis. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. IEEE, pp 1541–1544

  41. Tang J, Alelyani S, Liu H (2014) Feature selection for classification: a review. Data classification: algorithms and applications. 37

  42. Hira ZM, Gillies DF (2015) A review of feature selection and feature extraction methods applied on microarray data Advances in bioinformatics 2015

  43. Thanh Noi P, Kappas M (2018) Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1):18

    Google Scholar 

  44. Jadhav SD, Channe H (2016) Comparative study of K-NN, naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR) 5(1):1842–1845

    Google Scholar 

  45. Ali M, Son D-H, Kang S-H, Nam S-R (2017) An accurate CT saturation classification using a deep learning approach based on unsupervised feature extraction and supervised fine-tuning strategy. Energies 10(11):1830

    Google Scholar 

  46. Wang J, Shi C (2017) Automatic construction of statistical shape models using deformable simplex meshes with vector field convolution energy. Biomed Eng Online 16(1):49

    PubMed  PubMed Central  Google Scholar 

  47. Su Z (2011) Statistical shape modelling: automatic shape model building. UCL (University College London),

  48. Davies RH (2002) Learning shape: optimal models for analysing natural variability. University of Manchester Manchester

  49. Roohi SF, Zoroofi RA (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J Comput Assist Radiol Surg 8(3):335–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Babapour Mofrad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, A., Babapour Mofrad, F. & Pouladian, M. Contour-based lung shape analysis in order to tuberculosis detection: modeling and feature description. Med Biol Eng Comput 58, 1965–1986 (2020). https://doi.org/10.1007/s11517-020-02192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02192-y

Keywords

Navigation