Skip to main content
Log in

Influence of High-Temperature Annealing on Structural and Magnetic Properties of Crystalline Cobalt Ferrite Nanoparticles in the Single-Domain Regime

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have carried out a systematic study on the effect of high-temperature annealing on the structural and magnetic properties of ultra-small crystalline cobalt ferrite nanoparticles prepared by the hydrothermal method. The structural and the magnetic characterizations of nanoparticles were investigated by XRD, TEM, FTIR, and VSM. The results of Rietveld refinement revealed that the nanoparticles have a cubic single-phase spinel structure. High-temperature annealing was found to increase the lattice parameter and average crystallite size of the cobalt ferrite nanoparticles. The TEM measurements showed that the nanoparticles were monodisperse and spherical in shape. The FTIR results confirmed the single-phase nature of the prepared nanoparticles. The magnetic measurements showed that the nanoparticles were ferromagnetic over a wide temperature range. We have observed that the high-temperature annealing increased both the saturation magnetization and magnetocrystalline anisotropy and decreased the coercivity. We demonstrated that magnetic field induced superparamagnetism can be induced by applying stronger magnetic fields that were able to shift the blocking temperature (TB) down to below room temperature, resulting in a superparamagnetic behavior above TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldman, A.: Ferrites for permanent magnet applications. Modern Ferrite Technology, Springer Science & Business Media (2006)

  2. Xiangfeng, C., Dongli, J., Yu, G., Chenmou, Z.: Ethanol gas sensor based on cofe2o4 nano-crystallines prepared by hydrothermal method. Sens. Actuators B 120(1), 177–181 (2006)

    Article  Google Scholar 

  3. Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F.: Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181(2), 245–252 (2008)

    Article  ADS  Google Scholar 

  4. Kamran, M., Anis-ur Rehman, M.: Enhanced transport properties in ce doped cobalt ferrites nanoparticles for resistive ram applications. Journal of Alloys and Compounds 822, 153583 (2020)

    Article  Google Scholar 

  5. Song, J., Wang, L., Xu, N., Zhang, Q.: Microwave absorbing properties of magnesium-substituted mnzn ferrites prepared by citrate-edta complexing method. Journal of Materials Science & Technology 26(9), 787–792 (2010)

    Article  Google Scholar 

  6. Fannin, P., Marin, C., Malaescu, I., Stefu, N., Vlȧzan, P., Novaconi, S., Popescu, S.: Effect of the concentration of precursors on the microwave absorbent properties of zn/fe oxide nanopowders. J. Nanoparticle Res. 13(1), 311–319 (2011)

    Article  ADS  Google Scholar 

  7. Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P.: Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical reviews 112(11), 5818–5878 (2012)

    Article  Google Scholar 

  8. Su, K., Zhao, C., Wang, H., Huang, S., Liu, Z., Huo, D.: Synthesis, structure and magnetic properties of cofe2o4 ferrite nanoparticles. Materials Research Express 5(5), 056102 (2018)

    Article  Google Scholar 

  9. Valenzuela, R.: Magnetic ceramics, Vol. 4, Cambridge university press (2005)

  10. Meng, X., Li, H., Chen, J., Mei, L., Wang, K., Li, X.: Mössbauer study of cobalt ferrite nanocrystals substituted with rare-earth Y3+ ions. J. Magn. Magn. Mater. 321(9), 1155–1158 (2009)

    Article  ADS  Google Scholar 

  11. Goldman, A.: Modern ferrite technology Springer Science & Business Media US (2006)

  12. Thota, S., Kashyap, S.C., Sharma, S.K., Reddy, V.: Cation distribution in Ni-substituted Mn0. 5Zn0. 5Fe2O4 nanoparticles: A Raman, mössbauer, X-ray diffraction and electron spectroscopy study. Materials Science and Engineering: B 206, 69–78 (2016)

    Article  Google Scholar 

  13. Raland, R., Saikia, D., Borgohain, C., Borah, J.: Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. Journal of Physics D: Applied Physics 50(32), 325004 (2017)

    Article  Google Scholar 

  14. Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: Thermomagnetic properties of Co1- xZnxFe2O4 (x = 0.1–0.5) nanoparticles. J. Magn. Magn. Mater. 303(1), 131–137 (2006)

    Article  ADS  Google Scholar 

  15. Tawfik, A., Hamada, I., Hemeda, O.: Effect of laser irradiation on the structure and electromechanical properties of Co–Zn ferrite. J. Magn. Magn. Mater. 250, 77–82 (2002)

    Article  ADS  Google Scholar 

  16. Duong, G., Hanh, N., Linh, D., Groessinger, R., Weinberger, P., Schafler, E., Zehetbauer, M.: Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: Synthesis and characterization. J. Magn. Magn. Mater. 311(1), 46–50 (2007)

    Article  ADS  Google Scholar 

  17. Gözüak, F., Köseoġlu, Y., Baykal, A., Kavas, H.: Synthesis and characterization of CoxZn1- xFe2O4 magnetic nanoparticles via a PEG-assisted route. Journal of magnetism and magnetic materials 321(14), 2170–2177 (2009)

    Article  ADS  Google Scholar 

  18. Waje, S.B., Hashim, M., Yusoff, W.D.W., Abbas, Z.: X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl. Surf. Sci. 256(10), 3122–3127 (2010)

    Article  ADS  Google Scholar 

  19. Vignesh, H., Vishnu, V., Balakumar, P., Raguram, T., Rajni, K.: Structural and magnetic properties of cobalt ferrite (cofe2o4) nanoparticles by sol-gel technique using yeast. In: IOP Conference Series: Materials Science and Engineering, Vol. 577, IOP Publishing, p. 012092 (2019)

  20. Mathew, D.S., Juang, R.-S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal 129(1-3), 51–65 (2007)

    Article  Google Scholar 

  21. Jalili, H., Aslibeiki, B., Varzaneh, A.G., Chernenko, V.A.: The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein journal of nanotechnology 10(1), 1348–1359 (2019)

    Article  Google Scholar 

  22. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33(1), 1–8 (2013)

    Article  Google Scholar 

  23. Jun, Y.-w., Huh, Y.-M., Choi, J.-s., Lee, J.-H., Song, H.-T., Kim, S., Kim, S., Yoon, S., Kim, K.-S., Shin, J.-S., et al.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127(16), 5732–5733 (2005)

    Article  Google Scholar 

  24. Şincai, M., Gângǎ, D., Bica, D., Vékás, L.: The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma. Journal of magnetism and magnetic materials 225(1-2), 235–240 (2001)

    Article  ADS  Google Scholar 

  25. Tiano, A.L., Papaefthymiou, G.C., Lewis, C.S., Han, J., Zhang, C., Li, Q., Shi, C., Abeykoon, A.M., Billinge, S.J., Stach, E., et al.: Correlating size and composition-dependent effects with magnetic, mossbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem. Mater. 27(10), 3572–3592 (2015)

    Article  Google Scholar 

  26. Young, R.A.: The rietveld method, Vol. 5 International union of crystallography (1993)

  27. Sickafus, K.E., Hughes, R.: Spinel compounds: structure and property relations (1999)

  28. Kumar, L., Kumar, P., Narayan, A., Kar, M.: Rietveld analysis of xrd patterns of different sizes of nanocrystalline cobalt ferrite. International Nano Letters 3(1), 8 (2013)

    Article  ADS  Google Scholar 

  29. Bujakiewicz-Korońska, R., HetmańCzyk, Ł., Garbarz-glos, B., Budziak, A., Kalvane, A., Bormanis, K., Drużbicki, K.: Low temperature measurements by infrared spectroscopy in cofe2o4 ceramic. Open Physics 10(5), 1137–1143 (2012)

    Article  ADS  Google Scholar 

  30. Toksha, B., Shirsath, S.E., Patange, S., Jadhav, K.: Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Commun. 147(11-12), 479–483 (2008)

    Article  ADS  Google Scholar 

  31. Rao, K., Choudary, G., Rao, K., Sujatha, C.: Structural and magnetic properties of ultrafine cofe2o4 nanoparticles. Procedia Materials Science 10, 19–27 (2015)

    Article  Google Scholar 

  32. White, W., DeAngelis, B.: Interpretation of the vibrational spectra of spinels. Spectrochimica Acta Part A: Molecular Spectroscopy 23(4), 985–995 (1967)

    Article  ADS  Google Scholar 

  33. Naseri, M.G., Saion, E.B., Ahangar, H.A., Shaari, A.H., Hashim, M.: Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 75 (2010)

    Google Scholar 

  34. Poudyal, N.: Fabrication of Superparamagnetic and Ferromagnetic Nanoparticles. Ph.D. thesis, The University of Texas at Arlington (2008)

  35. Moubah, R., Ahlberg, M., Zamani, A., Olsson, A., Shi, S., Sun, Z., Carlson, S., Hallen, A., Hjörvarsson, B., Jönsson, P. E.: Origin of the anomalous temperature dependence of coercivity in soft ferromagnets. Journal of Applied Physics 116(5), 053906 (2014)

    Article  ADS  Google Scholar 

  36. Kumar, L., Kar, M.: Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite. IEEE Trans. Magn. 47(10), 3645–3648 (2011)

    Article  ADS  Google Scholar 

  37. Kumar, L., Kumar, P., Srivastava, S., Kar, M.: Low temperature and high magnetic field dependence and magnetic properties of nanocrystalline cobalt ferrite. J. Supercond. Nov. Magn. 27(7), 1677–1681 (2014)

    Article  Google Scholar 

  38. Maaz, K., Mumtaz, A., Hasanain, S., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (cofe2o4) nanoparticles prepared by wet chemical route. Journal of magnetism and magnetic materials 308(2), 289–295 (2007)

    Article  ADS  Google Scholar 

  39. Nairan, A., Khan, M., Khan, U., Iqbal, M., Riaz, S., Naseem, S.: Temperature-dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures. Nanomaterials 6(4), 73 (2016)

    Article  Google Scholar 

  40. Del Barco, E., Asenjo, J., Zhang, X., Pieczynski, R., Julia, A., Tejada, J., Ziolo, R., Fiorani, D., Testa, A.: Free rotation of magnetic nanoparticles in a solid matrix. Chemistry of materials 13(5), 1487–1490 (2001)

    Article  Google Scholar 

Download references

Funding

We received financial support from the deanship of scientific research at the Hashemite university under project number 75/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gassem M. Alzoubi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzoubi, G.M., Albiss, B.A., Shatnawi, M. et al. Influence of High-Temperature Annealing on Structural and Magnetic Properties of Crystalline Cobalt Ferrite Nanoparticles in the Single-Domain Regime. J Supercond Nov Magn 33, 3179–3188 (2020). https://doi.org/10.1007/s10948-020-05551-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05551-w

Keywords

Navigation