Skip to main content
Log in

Effect Melting Time on the Excess Conductivity and Critical Parameters of BSCCO Cooper Oxide System

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report here the effect of melting time (tm = 2.5–4.5 min) on the conductivity and dimensionality of BSCCO cooper oxide system. It is found that the mean field and crossover temperatures (Tcmf, T01, and T02) are increased by increasing tm up to 3.5 min, followed by a decrease with further increase of tm up to 4.5 min. The logarithmic plots of excess conductivity (∆σ) and reduced temperature (Є) reveal three regions of different exponents corresponding to two crossover temperatures in the slope of each plot. Interestingly, the crossover occurs from three dimensional (3D) to zero dimensional (0D/SW) in the mean field region and from 0D/SW to two dimensional (2D) in the critical field region, for the samples melted at tm = 2.5, 4, and 4.5 min, while it occurs from (3D) to one dimensional (1D) and from (1D) to (2D) for the sample melted at tm = 3.5 min. On the other hand, we have estimated several physical parameters such as order parameter exponents (λ), interlayer coupling (K), c-axis coherence length (ξc (0)), anisotropy (γ), Ginsburg number (Gi), critical magnetic fields (Hc(0), Hc1(0), and Hc2(0)), and critical current (Jc (0)) for all samples. It is found that λ1, λ3, K, ξc (0), Gi, and γ are increased by increasing tm up to 3.5 min, followed by a decrease with further increase of tm up to 4.5 min as well as Tc, Tcmf, and T0 behaviors. But the vice is versa for the behaviors of λ2, κ, Hc(0), Hc1(0), Hc2(0), Jc(0), and NG. Moreover, it is observed that the behavior of critical fields and critical current against melting time is controlled by the order parameter exponent of the second region rather than the first and third regions. These results are discussed in terms of the correlation between the effects of melting time on the weak links and the flow of actual supercurrent in the considered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209 (1988)

    ADS  Google Scholar 

  2. Jean, F., Collin, G., Andrieux, M., Blanchard, N., Marucco, J.F.: Physica C. 339, 269 (2000)

    ADS  Google Scholar 

  3. Yamada, Y., Watanabe, T., Suzuki, M.: Physica C. 815, 460–462 (2007)

    Google Scholar 

  4. Yamamoto, T., Kakeya, I., Kadowaki, K.: Physics C. 799, 460–462 (2007)

    Google Scholar 

  5. Ghosh, A.K., Bandyopadhyay, S.K., Barat, P., Sen, P., Basu, A.N.: Physica C. 255, 319 (1995)

    ADS  Google Scholar 

  6. Ghosh, A.K., Basu, A.N.: Supercond. Sci. Technol. 13, 343 (2000)

    ADS  Google Scholar 

  7. Khan, N.A., Hassan, N., Nawaz, S., Shabbir, B., Khan, S., Rizvi, A.A.: J. Appl. Phys. 107, 083910 (2010)

    ADS  Google Scholar 

  8. Ghosh, A.K., Bandyopadhyay, S.K., Basu, A.N.: Mod. Phys. Lett. B. 11, 1013 (1997)

    ADS  Google Scholar 

  9. Vidal, F., Veira, J.A., Maja, J., Ponte, J.J., Alvarado, F.G., Mordan, E., Amador, J., Cascales, C.: Physica C. 156, 807 (1988)

    ADS  Google Scholar 

  10. Fisher, D.S., Fisher, M.P.A., Huse, D.A.: Phys. Rev. B. 43, 130 (1991)

    ADS  Google Scholar 

  11. Mumtaz, M., Hasnian, S.M., Khurram, A.A., Khan, N.A.: J. Appl. Phys. 109, 023906 (2011)

    ADS  Google Scholar 

  12. Esmaeili, A., Sedghi, H., Amniat-Talab, M., Talebian, M.: Eur. Phys. J. B. 79, 443 (2011)

    ADS  Google Scholar 

  13. Sedky, A., Tamer, A.: J. Mater. Appl. 8(1), 41–49 (2019)

    Google Scholar 

  14. Sedky, A.: Material Science and Technology, High Temperature Superconductors. Nova Sci. Chapter 12, 247–263 (2018)

    Google Scholar 

  15. Sedky, A., Salah, A., Amin, S.A.: Asian J. Phys. Sci. Chem. 3(2), 1–15 (2017)

    Google Scholar 

  16. Sedky, A.: J. Alloys Compound. 499, 238 (2010)

    Google Scholar 

  17. Das, A., Suryanarayanan, R.: J. Phys. 15, 623 (1995)

    Google Scholar 

  18. Anderson, W., Zou, Z.: Phys. Rev. Lett. 60, 132 (1988)

    ADS  Google Scholar 

  19. Aslamazov, L.G., Larkin, A.I.: Phys. Lett. A. 26, 238 (1968) Sov. Phys. Solid State 10, 875 (1968)

    ADS  Google Scholar 

  20. Lawrence, W. E., Doniach, S., S. Proc. 12th Int. Conf. Low Temp. Phys. Kyoto, 1970. In: Kanada, E. (ed.) p. 361. Keigaku, Tokyo (1971)

  21. Gosh, A.K., Bandyopadhyay, S.K., Basu, A.N.: J. Appl. Phys. 86, 3247 (1999)

    ADS  Google Scholar 

  22. Ghosh, A.K., Bandyopadhyay, S.K., Barat, P., Sen, P., Basu, A.N.: Physica C. 264, 255 (1996)

    ADS  Google Scholar 

  23. Sedky, A.: J. Low Temp. Phys. 148, 53 (2007)

    ADS  Google Scholar 

  24. Ramallo, M.V., Torron, C., Vidal, F.: Physica C. 230, 97 (1994)

    ADS  Google Scholar 

  25. Baraduc, C., Bazdin, A.: Phys. Lett. A. 171, 408 (1992)

    ADS  Google Scholar 

  26. Reggiani, L., Vaglio, R., Varlamo, A.A.: Phys. Rev. B. 44, 9541 (1991)

    ADS  Google Scholar 

  27. Mori, N., Wilson, J.A., Ozaki, H.: Phys. Rev. 45, 10633 (1992)

    Google Scholar 

  28. Ravi, S., Seshu Bai, V.: Solid State Commun. 83, 117 (1992)

    ADS  Google Scholar 

  29. Weaver, B.D., Jackson, E.M., Summers, G.P., Jackson, E.A.: Phys. Rev. B. 46, 1134 (1992)

    ADS  Google Scholar 

  30. Veira, J.A., Maza, J., Vida, F.J.: Phys. Lett. A. 131, 310 (1988)

    ADS  Google Scholar 

  31. Mandal, P., Poddar, A., Das, A.N.: J. Phys: Condensed Matter. 6, 5689 (1994)

    ADS  Google Scholar 

  32. Samanta, S.B., Dutta, P.K., Awana, V.P.S., Gmelin, E., Narlikar, A.V.: Physica C. 178, 171 (1991)

    ADS  Google Scholar 

  33. Poole, P.C., Farach, A.H., Creswick, J.R., Prozorov, R.: Superconductivity, 2nd edn. Academic Press, Elsevier, San Diego (2007)

    Google Scholar 

  34. Abou Aly, A.I., Ibrahim, I.H., Awad, R., El-Harizy, A., Khalaf, A.: J. Supercond. Nov. Magn. 23(7), 1325 (2010)

    Google Scholar 

  35. Abou-Aly, A.I., Awad, R., Ibrahim, I.H., Abdeen, W.: Solid State Commun. 140, 281 (2009)

    ADS  Google Scholar 

  36. Abou-Aly, A.I., Awad, R., Kamal, M., Anas, M.: J. Low Temp. Phys. 163, 184 (2011)

    ADS  Google Scholar 

  37. Sedky, A.: J. Magn. Magn. Mater. 277, 293 (2004)

    ADS  Google Scholar 

  38. Mullers, K.H., Nikolo, M., Driver, R.: Phys. Rev. B. 43(10), 7976 (1991)

    ADS  Google Scholar 

  39. Petrovie, A., Fasano, Y., Lortz, R., Decrouc, M., Potel, M., Chevrel, R., Fischer, O.: Physica C. 702, 460–462 (2007)

    Google Scholar 

  40. Jaroszynski, J., Riggs, S.C., Hunte, F., Gurevich, A., Larbalestier, D.C., Boebinger, G.S., Balakirev, F.F., Migliori, A., Ren, Z.A., Lu, W., Yang, J., Shen, X.L., Dong, X.L., Zhao, Z.X., Jin, R., Sefat, A.S., McGuire, M.A., Sales, B.C., Christen, D.K., Mandrus, D.: Phys. Rev. B. 78, 064511 (2008)

    ADS  Google Scholar 

  41. Mun, M.O., Lee, S.I., Lee, W.C.: Phys. Rev. B. 56, 14668 (1997)

    ADS  Google Scholar 

  42. Ghorbani, S.R., Homaei, M.: Mod. Phys. Lett. B. 25(23), 1915 (2011)

    ADS  Google Scholar 

  43. Mandal, P., Poddar, A., Ghosh, B., Choudhary, P.: Phys. Rev. B. 43(16), 13102 (1991)

    ADS  Google Scholar 

  44. Matsuda, A., Kinoshita, K., Ishii, T., Shibata, H., Watanabe, T., Yamada, T.: Phys. Rev. B. 38, 2910 (1988)

    ADS  Google Scholar 

  45. Aloysius, R.P., Guruswamy, P., Syamaprasad, U.: Supercond. Sci. Technol. 18, L1 (2005)

    Google Scholar 

  46. Biju, A., Sarun, P.M., Aloysius, R.P., Syamaprasad, U.: Mater. Res. Bull. 42, 2057 (2007)

    Google Scholar 

  47. Biju, A., Sarun, P.M., Aloysius, R.P., Syamaprasad, U.: J. Alloys. Compound. 431, 49 (2007)

    Google Scholar 

  48. Sarun, P.M., Vinu, S., Shabna, R., Syamaprasad, U.: J. Alloys Compd. 472(1–2), 13 (2009)

    Google Scholar 

  49. Shabna, R., Sarun, P.M., Vinu, S., Syamaprasad, U.: J. Alloys Compd. 493, 11 (2010)

    Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/33/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sedky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedky, A., Ali, A.M. & Somaily, H.H. Effect Melting Time on the Excess Conductivity and Critical Parameters of BSCCO Cooper Oxide System. J Supercond Nov Magn 33, 2963–2969 (2020). https://doi.org/10.1007/s10948-020-05529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05529-8

Keywords

PACS

Navigation