Skip to main content

Advertisement

Log in

Red algae-derived k-carrageenan-based proton-conducting electrolytes for the wearable electrical devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Proton-conducting non-porous nature of k-carrageenan-based flexible solid electrolytes was prepared by facile solution casting technique. Altering the composition of NH4COOH, free ion percentage (%) was improved significantly and contributed vital role on the proton conductivity to an utmost level of 8.54 × 10−4 Scm−1. Especially, increasing the composition of protonic carrier, electrochemical stability window was tuned tremendously and topmost value of 6.3 V was captured for the 0.4 (M wt%) NH4COOH added electrolyte. Also, interfacial adhesion energy of the electrolytes was enhanced to the maximum level of 96.27 Jm−2, inferred from contact angle measurements. The obtained significant electrochemical performance of k-carrageenan-based samples is an excellent substitute direction towards the cost-effective and eco-friendly wearable electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang C, Wallace GG (2015) Flexible electrodes and electrolytes for energy storage. Electrochim Acta 175:87–95

    Article  CAS  Google Scholar 

  2. Christopher Selvin P, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Leena Chandra MV (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24(11):3535–3542

    Article  CAS  Google Scholar 

  3. Singh R, Polu AR, Bhattacharya B, Rhee H-W, Varlikli C, Singh PK (2016) Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew Sust Energ Rev 65:1098–1117

    Article  CAS  Google Scholar 

  4. Forsyth M, Porcarelli L, Wang X, Goujon N, Mecerreyes D (2019) Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc Chem Res 52(3):686–694

    Article  CAS  Google Scholar 

  5. Stauss S, Honma I (2018) Biocompatible batteries - materials and chemistry, fabrication, applications, and future prospects. Bull Chem Soc Jpn 91(3):492–505

    Article  CAS  Google Scholar 

  6. Ohno H, Yoshizawa-Fujita M, Kohno Y (2019) Functional design of ionic liquids: unprecedented liquids that contribute to energy technology, bioscience, and materials sciences. Bull Chem Soc Jpn 92(4):852–868

    Article  CAS  Google Scholar 

  7. Famprikis T, Canepa P, Dawson JA, Saiful Islam M, Masquelier C (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 18(12):1278–1291

    Article  CAS  Google Scholar 

  8. Perumal P, Christopher Selvin P, Selvasekarapandian S, Sivaraj P, Abhilash KP, Moniha V, Manjula Devi R (2019) Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. Polym Degrad Stab 159:43–53

    Article  CAS  Google Scholar 

  9. Mobarak NN, Jumaah FN, Ghani MA, Abdullah MP, Ahmad A (2015) Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim Acta 175:224–231

    Article  CAS  Google Scholar 

  10. Guiry MD, Guiry GM (2012) Algae base world-wide electronic publication, National University of Ireland Galway, http://www.algaebase.org/

  11. Mobarak NN, Ramli N, Ahmad A, Rahman M (2012) Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224:51–57

    Article  CAS  Google Scholar 

  12. Shamsudin IJ, Ahmad A, Hassan NH, Kaddami H (2016) Biopolymer electrolytes based on carboxymethyl –carrageenan and imidazolium ionic liquid. Ionics 22(6):841–851

    Article  CAS  Google Scholar 

  13. Hariprasad R, Vinothkannan M, Kim AR, Yoo DJ (2019) SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells. J Dispers Sci Technol:1–13. https://doi.org/10.1080/01932691.2019.1660672

  14. Vinothkannan M, Kannan R, Kim AR, Kumar GG, Nahm KS, Yoo DJ (2016) Facile enhancement in proton conductivity of sulfonated poly(ether ether ketone) using functionalized graphene oxide—synthesis, characterization, and application towards proton exchange membrane fuel cells. Colloid Polym Sci 294(7):1197–1207

    Article  CAS  Google Scholar 

  15. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, Aristatil G, Mani N, Premalatha M, Vinothpandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  Google Scholar 

  16. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22(10):3209–3223

    Article  CAS  Google Scholar 

  17. Zainuddin NK, Samsudin AS (2018) Investigation on the effect of NH4Br at transport properties in k–carrageenan based biopolymer electrolytes via structural and electricalanalysis. Mater Today Commun 14:199–209

    Article  CAS  Google Scholar 

  18. Yakimets I, Paes SS, Wellner N, Smith AC, Wilson RH, Mitchell JR (2007) Effect of water content on the structural reorganization and elastic properties of biopolymer films: a comparative study. Biomacromolecules 8(5):1710–1722

    Article  CAS  Google Scholar 

  19. Perumal P, Christopher Selvin P, Selvasekarapandian S, Abhilash KP (2019) Bio-host pectin complexed with dilithium borate based solid electrolytes for polymer batteries. Mater Res Express 6(11):115513

    Article  CAS  Google Scholar 

  20. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134:44702

    Article  CAS  Google Scholar 

  21. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. J Phys Chem B 120(44):11567–11573

    Article  CAS  Google Scholar 

  22. Park J-Y, Woon DE (2006) Theoretical modeling of formic acid (HCOOH), formate (HCOO), and ammonium (NH4+) vibrational spectra in astrophysical ices. Astrophys J 648(2):1285–1290

    Article  CAS  Google Scholar 

  23. Perumal P, Abhilash KP, Sivaraj P, Christopher Selvin P (2019) Study on Mg-ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries. Mater Res Bull 118:110490

    Article  CAS  Google Scholar 

  24. Premalatha M, Mathavan T, Selvasekarapandian S, Selvalakshmi S, Monisha S (2017) Incorporation of NH4Br in tamarind seed polysaccharide biopolymer and its potential use in electrochemical energy storage devices. Org Electron 50:418–425

    Article  CAS  Google Scholar 

  25. Yusof YM, Shukur MF, Illias HA, Kadir MFZ (2014) Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide. Phys Scr 89(3):35701

    Article  CAS  Google Scholar 

  26. Shuhaimi NEA, Alias NA, Majid SR, Arof AK (2008) Electrical double layer capacitor with proton conducting k-carrageenan-chitosan electrolytes. Funct Mater Lett 1(03):195–201

    Article  CAS  Google Scholar 

  27. Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crop Prod 72:133–141

    Article  CAS  Google Scholar 

  28. Isa MIN, Samsudin AS (2016) Potential study of bio-polymer based carboxy methylcellulose electrolytes system for solid state battery application. Int J Polym Mater Polym Biomater 65(11):561–567

    Article  CAS  Google Scholar 

  29. Shukur MF, Kadir MFZ (2015) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21(1):111–124

    Article  CAS  Google Scholar 

  30. Mazuki NF, Abdul Majeed APP, Nagao Y, Samsudin AS (2020) Studies on ionics conduction properties of modification CMC-PVA based polymer blend electrolytes via impedance approach. Polym Test 81:106234

    Article  CAS  Google Scholar 

  31. Rudhziah S, Ahmad A, Ahmad I, Mohamed NS (2015) Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell. Electrochim Acta 175:162–168

    Article  CAS  Google Scholar 

  32. Shukur MF, Kadir MFZ (2015) Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165

    Article  CAS  Google Scholar 

  33. Asmara SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97

    Article  CAS  Google Scholar 

  34. Vijayalekshmi V, Khastgir D (2018) Chitosan/partially sulfonated poly(vinylidene fluoride) blends as polymer electrolyte membranes for directmethanol fuel cell applications. Cellulose 25(1):661–681

    Article  CAS  Google Scholar 

  35. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. Perumal would like to acknowledging financial assistance through a fellowship by DST-PURSE/Bharathiar University and Prof. S. Selvasekarapandianfor extending some research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Perumal—conceptualization, experimental methodology, writing, and discussion. Christopher Selvin—supervising, editing, and discussion enrichment.

Corresponding author

Correspondence to P. Christopher Selvin.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perumal, P., Selvin, P.C. Red algae-derived k-carrageenan-based proton-conducting electrolytes for the wearable electrical devices. J Solid State Electrochem 24, 2249–2260 (2020). https://doi.org/10.1007/s10008-020-04724-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04724-w

Keywords

Navigation