Skip to main content
Log in

Multivariate calibration combined differential pulse voltammetry for simultaneous electroanalytical determination of phenolic compounds using a Fe3O4-modified carbon paste electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In present study, a simple carbon paste electrode modified with iron oxide nanoparticles was used as an electrochemical sensor to analyze phenolic compounds. The combination of differential pulse voltammetry technique with partial least-squares multivariable analysis enabled simultaneous determination of six different compounds in phenolic mixtures (2,4-dimethylphenol, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 3-nitrophenol, 4-nitrophenol, and phenol). The proposed sensor was trained with standard mixtures to learn about fingerprint (current responses in voltammograms) before further applications in analysis of test mixtures and real samples. The results have shown that the proposed method is applicable to simultaneously detect six interested compounds with acceptable relative standard errors (less than 20% in most cases). These findings provide an effective tool for in situ and low-cost cost analysis of phenolic contaminants in water environments and phenolic compounds in foodstuffs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Toxicological profile for Phenol (2008) Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta

  2. Saha NC, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63(2):195–202

    Article  CAS  PubMed  Google Scholar 

  3. de Souza Campos Junior FA, Petrarca MH, Meinhart AD, e Jesus Filho M, Godoy HT (2019) Multivariate optimization of extraction and validation of phenolic acids in edible mushrooms by capillary electrophoresis. Food Res Int 126:108685

  4. Gramza-Michalowska A, Bueschke M, Kulczynski B, Gliszczynska-Swiglo A, Kmiecik D, Bilska A, Purlan M, Walesa L, Ostrowski M, Filipczuk M, Jedrusek-Golinska A (2019) Phenolic compounds and multivariate analysis of antiradical properties of red fruits. J Food Meas Charact 13(3):1739–1747

    Article  Google Scholar 

  5. Azevedo RSA, Teixeira BS, da Silva Sauthier MC, Santana MVA, Lopes dos Santos WN, de Andrade SD (2019) Multivariate analysis of the composition of bioactive in tea of the species Camellia sinensis. Food Chem 273:39–44

    Article  CAS  PubMed  Google Scholar 

  6. Valentin L, Barroso LP, Barbosa RM, de Paulo GA, Castro IA (2020) Chemical typicality of South American red wines classified according to their volatile and phenolic compounds using multivariate analysis. Food Chem 302:125340

    Article  CAS  PubMed  Google Scholar 

  7. Stander MA, Brendler T, Redelinghuys H, Van Wyk BE (2019) J Food Compos Anal 75:66–73

    Article  CAS  Google Scholar 

  8. de Albuquerque Mendes MK, dos Santos Oliveira CB, Veras MDA, Araujo BQ, Dantas C, Chaves MH, Junior CAL, Vieira EC (2019) Application of multivariate optimization for the selective extraction of phenolic compounds in cashew nuts (Anacardium occidentale L.). Talanta 205:120100

    Article  CAS  Google Scholar 

  9. Almeida LC, Correia RD, Squillaci G, Morana A, La Cara F, Correia JP (2019) Electrochemical deposition of bio-inspired laccase-polydopamine films for phenolic sensors. Electrochim Acta 319:462–471

    Article  CAS  Google Scholar 

  10. Wee Y, Park S, Kwon YH, Ju Y, Yeon K, Kim J (2019) Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens Bioelectron 132:279–285

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Zhai F, Hasebe Y, Jia H, Zhang Z (2018) A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 122:174–182

    Article  CAS  PubMed  Google Scholar 

  12. Karuppiah C, Palanisamy S, Chen S-M, Emmanuel R, Ali MA, Muthukrishnan P, Prakash P, Al-Hemaid FMA (2014) Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol. J Solid State Electrochem 18(7):1847–1854

    Article  CAS  Google Scholar 

  13. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix. J Solid State Electrochem 19(9):2849–2858

    Article  CAS  Google Scholar 

  14. Yadav HM, Lee J-J (2019) One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J Solid State Electrochem 23(2):503–512

    Article  CAS  Google Scholar 

  15. Pino F, Mayorga-Martinez CC, Merkoci A (2016) High-performance sensor based on copper oxide nanoparticles for dual detection of phenolic compounds and a pesticide. Electrochem Commun 71:33–37

    Article  CAS  Google Scholar 

  16. Lima AP, Souza RC, Silva MNT, Goncalves RF, Nossol E, Richter EM, Lima RC, Munoz RAA (2018) Influence of Al2O3 nanoparticles structure immobilized upon glassy-carbon electrode on the electrocatalytic oxidation of phenolic compounds. Sensors Actuators B Chem 262:646–654

    Article  CAS  Google Scholar 

  17. Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA (2019) The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 554:603–610

    Article  CAS  PubMed  Google Scholar 

  18. Gan T, Shi Z, Wang K, Chen Y, Sun J, Liu Y (2015) Size-controlled core–shell-structured Ag@carbon spheres for electrochemical sensing of bisphenol a. J Solid State Electrochem 19(8):2299–2309

    Article  CAS  Google Scholar 

  19. Campos AM, Raymundo-Pereira PA, Cincotto FH, Canevari TC, Machado SAS (2016) Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. J Solid State Electrochem 20(9):2503–2507

    Article  CAS  Google Scholar 

  20. Yin H, Zhou Y, Liu T, Tang T, Ai S, Zhu L (2012) Determination aminopyrine in pharmaceutical formulations based on APTS-Fe3O4 nanoparticles modified glassy carbon electrode. J Solid State Electrochem 16(2):731–738

    Article  CAS  Google Scholar 

  21. Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 17(3):881–887

    Article  CAS  Google Scholar 

  22. Tian M, Thind SS, Simko M, Gao F, Chen A (2012) Quantitative structure–reactivity study of electrochemical oxidation of phenolic compounds at the SnO2–based electrode. J Phys Chem A 116(11):2927–2934

    Article  CAS  PubMed  Google Scholar 

  23. Gattrell M, Kirk D (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng 68(6):997–1003

    Article  CAS  Google Scholar 

  24. Li X, Cui Y, Feng Y, Xie Z, Gu J (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39(10):1972–1981

    Article  CAS  PubMed  Google Scholar 

  25. Ferreira M, Varela H, Torresi RM, Tremiliosi-Filho G (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochim Acta 52(2):434–442

    Article  CAS  Google Scholar 

  26. Ajeel MA, Aroua MK, Wan Daud WMA, Mazari SA (2017) Effect of adsorption and passivation phenomena on the electrochemical oxidation of phenol and 2-chlorophenol at carbon black diamond composite electrode. Ind Eng Chem Res 56(6):1652–1660

    Article  CAS  Google Scholar 

  27. Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1-3):560–566

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Liao H, Zhou Y, Du Y, Wei C, Zhao J, Sun S, Loo JSC, Xu ZJ (2015) Fe2O3 nanoparticle/SWCNT composite electrode for sensitive electrocatalytic oxidation of hydroquinone. Electrochim Acta 180:1059–1067

    Article  CAS  Google Scholar 

  29. Negash N, Alemu H, Tessema M (2015) Electrochemical characterization and determination of phenol and chlorophenols by voltammetry at single wall carbon nanotube/poly(3,4-ethylenedioxythiophene) modified screen printed carbon electrode. Int Sch Res Notices Article ID 459246

  30. Moraes FC, Tanimoto ST, Salazar-Banda GR, Machado SAS, Mascaro LH (2009) A new indirect electroanalytical method to monitor the contamination of natural waters with 4-nitrophenol using multiwall carbon nanotubes. Electroanalysis 21(9):1091–1098

    Article  CAS  Google Scholar 

  31. Pascual L, Gras M, Vidal – Brotons D, Alcaniz M, Martinez-Manez R, Ros-Lis JV (2018) A voltammetric e-tongue tool for the emulation of the sensorial analysis and the discrimination of vegetal milks. Sensors Actuators B Chem 270:231–238

  32. Zribi B, Drago D, Scorsone E (2019) BDD electrodes modified with metal nano-catalysts for coffee discrimination in real samples. Sensors Actuators B Chem 290:147–154

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam Academy of Science and Technology (VAST), under grant numbers KHCBHH.01/19-21 and NCVCC06.10/20-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Thi Thu Ha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, V.H., Thu, V.T., Giang, L.T. et al. Multivariate calibration combined differential pulse voltammetry for simultaneous electroanalytical determination of phenolic compounds using a Fe3O4-modified carbon paste electrode. J Solid State Electrochem 24, 2241–2248 (2020). https://doi.org/10.1007/s10008-020-04731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04731-x

Keywords

Navigation