Skip to main content
Log in

Room temperature ammonia gas sensor using Nd-doped SnO2 thin films and its characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 21 July 2020

This article has been updated

Abstract

Nd-doped SnO2 thin films are prepared by the nebulizer spray pyrolysis method. The compositional and morphological studies are discussed. The X-ray diffraction reveals that the films are polycrystalline in nature. The grain size increases as the doping concentration of Nd increases. The x-axis orientation of the films is enhanced by Nd doping. The intensity of the miller indices (200) is enhanced due to doping. In the Raman spectrum, the doping concentration-dependent intensity is observed. The quenching is observed in the photoluminescence spectrum. The transmittance and the band gap of films have been decreased due to doping. The 5 wt% Nd-doped film shows the maximum response to ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 21 July 2020

    The original version of the article (https://doi.org/10.1007/s10854-020-03809-6) was unfortunately published with errors in Table 2 and Fig. 9a. These errors are corrected in this article. The corrected table and figure are given below.

References

  1. L. BrunoChandrasekar, P. Raji, R. Chandramohan, R. Vijayalakshmi, G. Devi, P. Shunmugasundaram, P. Sindhu, J. Nanoelectron. Optoelectron 8(4), 369–372 (2013)

    Article  Google Scholar 

  2. L. BrunoChandrasekar, M. Karunakaran, K. Gnanasekar, Commun. Theor. Phys. 71(3), 339–343 (2019)

    Article  CAS  Google Scholar 

  3. N. Liu, M. Chen, M. Ran, C. Zhang, X. Luo, H. Lu, Y. Yang, Opt. mat. Express 10, 157, (2020)

  4. L. BrunoChandrasekar, S. Nagarajan, P. Ramasundari, R. Vijayalakshmi, M. Karunakaran, T. Daniel Thangadurai, J. Optoelectron Adv M, 21, 146–150, (2019)

  5. D.H.O. Machado, L.V.A. Scalvi, C.F. Bueno, Condens. Matter 2, 9 (2017)

    Article  Google Scholar 

  6. E. Boyal, V. Baran, T. Asar, S. Ozcelik, M. Kasap, J. Alloys Compd. 692, 119 (2017)

    Article  Google Scholar 

  7. S. Gurakar, T. Serin, N. Serin, Appl. Surf. Sci. 352, 16 (2015)

    Article  CAS  Google Scholar 

  8. Y. Zuo, S. Ge, L. Zhang, S. Yan, X. Zhou, Y. Xiao, J. Alloys Compd. 475, 60 (2009)

    Article  CAS  Google Scholar 

  9. G. Bhatia, V.K. Gupta, M.M. Patidar, S.B. Srivasatava, D. Singh, G. Mohan, V. Ganesan, AIP Conference Proc. 1953, 100084 (2018)

    Article  Google Scholar 

  10. MJ. Powell, BAD Williamson, B. Song-Yi, J. Manzi, DB Potter, DO Scanlon, CJ Carmalt, Chem. Sci. 9, 7968, (2018)

  11. Y. Cho, N.S. Parmar, SahnNahm, C. Ji-Won, J. Alloys. Compd 694, 217–222 (2017)

    Article  CAS  Google Scholar 

  12. S. Haya, O. Brahmia, O. Halimi, M. Sebais, B. Boudine, Mater. Res. Express 4, 106406 (2017)

    Article  Google Scholar 

  13. KA Bogle, KD More, S Begum, JW Dadge, MP Mahabole, RS khairnar, Indian J. Pure Ap.Phy. 56, 755, (2018)

  14. P. Kumar, K. Kumari, M. Sharma, P.A. Alvi, S. Kumar, AIP Conf Proc 2006, 030039 (2018)

    Article  Google Scholar 

  15. N. Nanda Kumar Reddy, H. Sharma Akkera, M. Chandra Sekhar, P. Si‑Hyun, Appl. Phys. A,123, 761, (2017)

  16. Q.P. Tran, J.S. Fang, T.S. Chin, Mat. Sci. Semicond. Process. 40, 664 (2015)

    Article  CAS  Google Scholar 

  17. M.H. Diwan, W.M. Kadem, Z.T. Khodair, AIP Conf Proc 2144, 030010 (2019)

    Article  Google Scholar 

  18. G. Singh, Virpal, Ravi Chand Singh. Sens. Actuators B Chem 282, 373–383 (2019)

    Article  CAS  Google Scholar 

  19. Wu Yuemei, H. Zhang, Y. Liu, W. Chen, J. Ma, S. Li, Z. Qin, J. Sens. 15, 14230–14240 (2015)

    Article  Google Scholar 

  20. TV. Gavrilovic, DJ. Jovanovic, MD. Dramicanin, Nanomaterials for green Energy, 55, 81, (2018)

  21. R.S. Katiyar, P. Dawson, M.M. Hargreave, G.R. Wilkinson, J. Phys. C: Solid State Phys. 4, 2421 (1971)

    Article  CAS  Google Scholar 

  22. R.N. Mariammala, K. Ramachandrana, B. Renganathan, D. Sastikumar, Sens. Actuators B 169, 199–207 (2012)

    Article  Google Scholar 

  23. D.L. Hou, H.J. Meng, L.Y. Jia, X.J. Ye, H.J. Zhou, X.L. Li, Phys. Lett. A 364, 318 (2007)

    Article  CAS  Google Scholar 

  24. K. Thirumurugan, K. Ravichandran, R. Mohan, S. Snega, S. Jothiramalingam, R. Chandramohan, Surf Eng 29(5), 373–378 (2013)

    Article  CAS  Google Scholar 

  25. K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30(2), 97–102 (2014)

    Article  CAS  Google Scholar 

  26. L. Bruno Chandrasekar, S. Nagarajan, P. Ramasundari, R.Vijayalakshmi, M. Karunakaran, T. DanielThangadurai, J.Optoelec.Adv.Mater.21, 146, (2019)

  27. S. Deepa, B. Thomas, K. PrasannaKumari, J. Mater Sci-Mater. El, 30, 16579, (2019)

  28. T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S.P. Subramanian, J. Mater. Sci. 43, 1776 (2008)

    Article  CAS  Google Scholar 

  29. N.N.K. Reddy, H.S. Akkera, M.C. Sekhar, S.H. Park, Appl. Phys. A 123, 761 (2017)

    Article  Google Scholar 

  30. C.S. Prajapati, P.P. Sahay, Appl. Surf. Sci. 258, 2823–2828 (2012)

    Article  CAS  Google Scholar 

  31. K. Govardhan, A. Nirmala Grace, J. Sens. Vol 2016, Article ID 7652450,p. 12

  32. K. Deva Arun Kumar, S. Valanarasu, JS. Ponraj, BJ. Fernandes, M. Shakir, S. Alfaify, P. Murahari, K. Ramesh, J Phys Chem Solids, 144, 109513, (2020)

  33. K. Khun Khun, A. Mahajan, RK. Bedi, J. Appl. Phys. 106, 124509, (2009)

  34. Y. Wang, Q. Mu, G. Wang, Z. Zhou, Sens. Actuators B 145 847–853, (2010)

  35. NG Deshpande, YG Gudage, R. Sharma, JC Vyas, JB Kim, YP Lee, Sens. Actuators B 138, 76–84, (2009)

  36. S. Rani, SC. Roy, MC. Bhatnagar, Sens. Actuators B, 122, 204–210, (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bruno Chandrasekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, S., Karunakaran, M., Chandrasekar, L.B. et al. Room temperature ammonia gas sensor using Nd-doped SnO2 thin films and its characterization. J Mater Sci: Mater Electron 31, 12586–12594 (2020). https://doi.org/10.1007/s10854-020-03809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03809-6

Navigation