Skip to main content
Log in

Impact of SiO2 interfacial layer on the electrical characteristics of Al/Al2O3/SiO2/n-Si metal–oxide–semiconductor capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this study is to reduce the oxide and interface-trap charges and also improve the stability at the oxide–semiconductor interface by growing a SiO2 interface layer on a Si wafer then depositing Al2O3 thin film. Effective oxide charges density (Nox), border trap charges density (Nbt), interface states density (Nit), diffusion potential (VD), donor concentration (ND), and barrier height \({(\varPhi }_{\mathrm{B}})\) were calculated using the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements at different annealing temperatures. The flat-band voltage (Vfb) changed with annealing temperature and the Vfb value for the 450 °C annealed sample was closest to the ideal Vfb. The sample also possessed a high dielectric constant. For these reasons, C–V and G/w–V values of this sample at different frequencies were obtained. Compared to previous studies, very low Nbtvalues (~ 109 eV−1 cm−2), low Nit values (~ 1010 eV−1 cm−2) and high \({\varPhi }_{\mathrm{B}}\) values for the annealed samples were obtained due to the SiO2 interface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

We confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Code availability

Not applicable.

References

  1. L. Christophe, Making Silicon Valley: Innovation and the Growth of High Tech, 1930–1970 (Chemical Heritage Foundation, Philadelphia, 2006), pp. 253–256

    Google Scholar 

  2. S.S. Cetin, H.I. Efkere, T. Sertel, A. Tataroglu, S. Ozcelik, Silicon 100, 1–5 (2020). https://doi.org/10.1007/s12633-020-00383-8

    Article  CAS  Google Scholar 

  3. A. Kahraman, U. Gurer, R. Lok, S. Kaya, E. Yilmaz, J. Mater. Sci. Mater. Electron. 29(20), 17473–17482 (2018)

    Article  CAS  Google Scholar 

  4. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, J. Mater. Sci. Mater. Electron. 26(11), 8277–8284 (2015)

    Article  CAS  Google Scholar 

  5. M.I. Idris, N.G. Wright, A.B. Horsfall, Mater. Sci. Forum 924, 486–489 (2018)

    Article  Google Scholar 

  6. Y. Wang, R. Jia, C. Li, Y. Zhang, AIP Adv. 5(8), 3–8 (2015)

    Article  Google Scholar 

  7. A. Bouazra, S.A. Nasrallah, M. Said, A. Poncet, Res. Lett. Phys. (2008). https://doi.org/10.1155/2008/286546

    Article  Google Scholar 

  8. N.M. Terlinden, G. Dingemans, V. Vandalon, R.H.E.C. Bosch, W.M.M. Kessels, J. Appl. Phys. 115(3), 033708 (2014)

    Article  Google Scholar 

  9. R. Khosla, E.G. Rolseth, P. Kumar, S.S. Vadakupudhupalayam, S.K. Sharma, J. Schulze, IEEE Trans. Device Mater. Reliab. 17(1), 80–89 (2017)

    Article  CAS  Google Scholar 

  10. S. Kitai, O. Maida, T. Kanashima, M. Okuyama, Jpn. J. Appl. Phys. 1(42), 247–253 (2003)

    Article  Google Scholar 

  11. J. Robertson, Rep. Prog. Phys. 69, 327 (2006)

    Article  CAS  Google Scholar 

  12. S. Kaya, E. Budak, E. Yilmaz, Turk. J. Phys. 42(4), 470–477 (2018)

    Article  CAS  Google Scholar 

  13. R. Khosla, S.K. Sharma, J. Vac. Sci. Technol. B 36, 012201 (2018)

    Article  Google Scholar 

  14. S. Demirezen, I. Orak, Y. Azizian-Kalandaragh, S. Altindal, J. Mater. Sci. Mater. Electron. 28, 12967–12976 (2017)

    Article  CAS  Google Scholar 

  15. A. Tataroǧlu, G.G. Güven, S. Yilmaz, A. Büyükbas, Gazi Univ. J. Sci. 27(3), 909–915 (2014)

    Google Scholar 

  16. X.Y. Liu, Y.Y. Wang, Z.Y. Peng, C.Z. Li, J. Wu, Y. Bai, Y.D. Tang, K.A. Liu, H.J. Shen, Chin. Phys. B 24, 087304 (2015).

    Article  Google Scholar 

  17. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 112, 064506–064507 (2012)

    Article  Google Scholar 

  18. A. Kahraman, H. Karacali, E. Yilmaz, J. Alloys Compd. 825, 154171 (2020)

    Article  CAS  Google Scholar 

  19. R. Khosla, P. Kumar, S.K. Sharma, IEEE Trans. Device Mater. Reliab. 15(4), 610–616 (2015)

    Article  CAS  Google Scholar 

  20. G. Brammertz, H.C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud, C. Adelmann, S. Sioncke, W.E. Wang, M. Caymax, M. Meuris, M. Heyns, ECS Trans. 16, 507 (2008)

    Article  CAS  Google Scholar 

  21. P. Zhao et al., 2D Mater. 5, 3 (2018)

    Google Scholar 

  22. W. Bachir Bouiadjra, A. Saidane, A. Mostefa, M. Henini, M. Shafi, Superlattices Microstruct. 71, 225–237 (2014)

    Article  CAS  Google Scholar 

  23. S. Kaya, E. Yilmaz, IEEE Trans. Electron Devices 62(3), 980–987 (2015)

    Article  CAS  Google Scholar 

  24. A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, IEEE Trans. Nucl. Sci. 63(2), 1284–1293 (2016)

    Article  CAS  Google Scholar 

  25. M. Pawlik et al., Energy Procedia 60(C), 85–89 (2014)

    Article  CAS  Google Scholar 

  26. S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, J. Alloys Compd. 583, 476–480 (2014)

    Article  CAS  Google Scholar 

  27. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R 88, 1–41 (2015)

    Article  Google Scholar 

  28. S.M. Sze, Semiconductor Devices Physics and Technology (Wiley, Hoboken, 1985)

    Google Scholar 

  29. R.A.B. Devine, J. Phys. III France 6, 1569–1594 (1996)

    Article  CAS  Google Scholar 

  30. N. Balaji, C. Park, S. Chung, M. Ju, J. Raja, J. Yi, J. Nanosci. Nanotechnol. 16, 4783 (2016)

    Article  CAS  Google Scholar 

  31. W. Von Ammon, R. Hölzl, J. Virbulis, E. Dornberger, R. Schmolke, D. Gräf, J. Cryst. Growth 226(1), 19–30 (2001)

    Article  Google Scholar 

  32. A. Kahraman, J. Mater. Sci. Mater. Electron. 29(10), 7993–8001 (2018)

    Article  CAS  Google Scholar 

  33. T. Hosoi et al., Mater. Sci. Forum 679–680, 496–499 (2011)

    Article  Google Scholar 

  34. W. Kern, J. Vossen, Thin Film Processes (Academic, New York, 1978)

    Google Scholar 

  35. T.P. Chen, IEEE Trans. Electron Devices 49, 1493–1496 (2002)

    Article  CAS  Google Scholar 

  36. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, J. Mater. Sci. Mater. Electron. 27(12), 13154–13160 (2016)

    Article  CAS  Google Scholar 

  37. H. Xiao, S. Huang, Mater. Sci. Semicond. Process. 13, 395 (2010)

    Article  CAS  Google Scholar 

  38. H.M. Baran, A. Tataroglu, Chin. Phys. B22, 047303–047304 (2013)

    Article  Google Scholar 

  39. F. Parlaktürk, Ş. Altindal, A. Tataroǧlu, M. Parlak, A. Agasiev, Microelectron. Eng. 85, 81 (2008)

    Article  Google Scholar 

  40. I. Dökme, Ş. Altindal, Physica B 393(1–2), 328–335 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number 2016K12-2834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Yilmaz.

Ethics declarations

Conflicts of interest

We declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimbugwe, N.T., Yilmaz, E. Impact of SiO2 interfacial layer on the electrical characteristics of Al/Al2O3/SiO2/n-Si metal–oxide–semiconductor capacitors. J Mater Sci: Mater Electron 31, 12372–12381 (2020). https://doi.org/10.1007/s10854-020-03783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03783-z

Navigation