Skip to main content
Log in

Doping-induced dielectric and transport properties of Ni1−xZnxO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni1−xZnxO (with 0 ≤ x ≤ 0.05) nanoparticles are synthesized by chemical precipitation method in order to investigate the effect of Zn doping on the dielectric and transport properties of NiO. Prepared samples are characterized by means of X-ray diffraction (XRD) method, scanning electron microscope (SEM), and Transmission electron microscope (TEM). The size of the nanoparticles is calculated and found to be 26 nm and 22 nm for x = 0.0 and 0.05, respectively. Regular increase of the optical band gap with increase in doping concentration (x) is observed which is consistent with the variation of particle size. Frequency (f) dependence of AC (σac) conductivity, dielectric constant (εr), and dielectric loss (tanδ) of Ni1−xZnxO (0 ≤ x ≤ 0.05) has been studied. It is observed that the dielectric constant (εr) increases gradually with x at high frequency (2 MHz). The dc conductivity (σdc) is found to decrease with Zn doping at room temperature which may be attributed to the reduction of oxygen vacancy. The temperature dependence of dielectric properties for x = 0.00, 0.05 are also investigated as a function of f. Cross over of dc conductivity of Ni0.95Zn0.05O to that of NiO observed around ~ 365 K indicates the lowering of activation energy of conductivity for x = 0.05 with increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Roy, R.A. Roy, D.M. Roy, Alternative perspectives on “Quasi-Crystallinity”: non-uniformity and nanocomposites. Mater. Lett. 4, 323–328 (1986)

    Google Scholar 

  2. S. Kanchana, M.J. Chithra, S. Ernest, K. Pushpanathan, Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method. J. Lumin. 176, 6–14 (2016)

    CAS  Google Scholar 

  3. M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta. Metall. Sin. (Engl. Lett.) 28(3), 394–404 (2015)

    Google Scholar 

  4. C. Shi, Y. Zhu, Q. Xu, N. Zhang, T. Xie, Z. Wang, H. Fan, Morphology modulation and gas sensitivity improvement of indium oxide semiconductor nanomaterials. J. Mater. Sci. 31, 5047–5053 (2020)

    CAS  Google Scholar 

  5. I.M. El-Nahhal, S.M. Zourab, F.S. Kodeh, A.A. Elmanama, M. Selmane, I. Genois, F. Babonneau, Nano-structured zinc oxide-cotton fibers: synthesis, characterization and applications. J. Mater. Sci. 24, 3970–3975 (2013)

    CAS  Google Scholar 

  6. G. Liu, M. Peng, W. Song, H. Wang, D. Zou, An 8.07% efficient fiber dye-sensitized solar cell based on a TiO2 micron-core array and multilayer structure photoanode. Nano Energy 11, 341–347 (2015)

    Google Scholar 

  7. W.T. Chang, Y.C. Chen, K.S. Kao, Y.H. Chu, C.C. Cheng, Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power. Thin Solid Films 529, 39–44 (2013)

    CAS  Google Scholar 

  8. A. Mondal, S. Sarkar, N. Giri, S. Chatterjee, R. Ray, Magnetic phase separation in diluted magnetic system: Zn1-xFexO. Acta Metall. Sin. (Engl. Lett.) 30(6), 521–527 (2017)

    CAS  Google Scholar 

  9. A. Mondal, N. Giri, S. Sarkar, R. Ray, Magnetic properties of Zn1-xNixO. AIP Conf. Proc. 1953(120017), 1–4 (2018)

    Google Scholar 

  10. C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X. Yin, T. Wang, A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77, 455–459 (2008)

    CAS  Google Scholar 

  11. K. Kaviyarasu, P.A. Devarajan, Synthesis and characterization studies of cadmium doped MgO nanocrystals for optoelectronics application. Adv. Appl. Sci. Res. 2(6), 131–138 (2011)

    CAS  Google Scholar 

  12. A. Franco Jr., H.V.S. Pessoni, Enhanced dielectric constant of Co-doped ZnO nanoparticulate powders. Phys. B 476, 12–18 (2015)

    CAS  Google Scholar 

  13. C. Thangamani, K. Pushpanathan, Optical and magnetic behavior of NiZnO nanoparticles. J. Chem. Pharm. Sci. 11, 111–113 (2015)

    Google Scholar 

  14. I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Preparation of nickel oxide thin films for gas sensors applications. Sens. Actuators B 57, 147–152 (1999)

    CAS  Google Scholar 

  15. C. Thangamani, K. Pushpanathan, Optical and dielectric behavior of NiO: Zn quantum dots. J. Chem. Pharm. Res. 8(8), 749–757 (2016)

    CAS  Google Scholar 

  16. S.G. Danjumma, Y. Abubakar, S. Suleiman, Nickel oxide (NiO) devices and applications: a review. Int. J. Eng. Res. Technol. (IJERT) 8(4), 461–467 (2019)

    Google Scholar 

  17. X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 16, 37–39 (2005)

    CAS  Google Scholar 

  18. K. Deevi, V.S.R. Immareddy, Synthesis and characterization of optically transparent nickel oxide nanoparticles as a hole transport material for hybrid perovskite solar cells. J. Mater. Sci. 30, 6242–6248 (2019)

    CAS  Google Scholar 

  19. B. Kowsalya, V.V.A. Thampi, V. Sivakumar, B. Subramaniun, Electrochemical detection of chromium(VI) using NiO nanoparticles. J. Mater. Sci. 30, 14755–14761 (2019)

    CAS  Google Scholar 

  20. H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27–31 (1993)

    CAS  Google Scholar 

  21. W. Wei, X. Jiang, L. Lu, X. Yang, X. Wang, Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant. J. Hazard Mater. 168, 838–842 (2009)

    CAS  Google Scholar 

  22. Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 437, 106–109 (2005)

    CAS  Google Scholar 

  23. G.A. Sawatzky, J.W. Allen, Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53(24), 2339–2342 (1984)

    CAS  Google Scholar 

  24. A. Alejandre, F. Medina, P. Salagre, A. Fabregat, J.E. Sueiras, Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions. Appl. Catal. B 18, 307–315 (1998)

    CAS  Google Scholar 

  25. F. Li, H. Chen, C. Wang, K. Hu, A novel modified NiO cathode for molten carbonate fuel cells. J. Electroanal. Chem. 531, 53–60 (2002)

    CAS  Google Scholar 

  26. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, Influence of Zn2+ ions incorporation on the magnetic and pseudo capacitance behaviors of NiO nanoparticles. Mat. Sci. Semicon. Proc. 27, 846–853 (2014)

    CAS  Google Scholar 

  27. U.K. Panigrahi, P.K. Das, P.D. Babu, N.C. Mishra, P. Mallick, Structural, optical and magnetic properties of Ni1-xZnxO/Ni nanocomposite. SN Appl. Sci. 1, 438 (2019). https://doi.org/10.1007/s42452-019-0461-0]

    Article  Google Scholar 

  28. J.A. Boukhari, L. Zeidan, A. Khalaf, R. Awad, Synthesis, characterization, optical and magnetic properties of pure and Mn Fe and Zn doped NiO nanoparticles. Chem. Phys. (2018). https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  Google Scholar 

  29. F.R. Marcos, C.V. Manzano, J.J. Reinosa, J.J. Romero, P. Marchet, M.S.M. González, J.F. Fernández, Mechanism of Ni1-xZnxO formation by thermal treatments on NiO nanoparticles dispersed over ZnO. J. Phys. Chem. C 115, 13577–13583 (2011)

    Google Scholar 

  30. J. Wang, X. Wei, P. Wangyang, Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for ammonia molecule detection. Nanoscale Res. Lett. 10(461), 1–9 (2015)

    Google Scholar 

  31. J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, Y. Zhang, Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J. Mater. Chem. 22, 20038–20047 (2012)

    CAS  Google Scholar 

  32. N. Giri, S. Das, S. Sarkar, A. Mondal, S. Giri, R. Ray, Doping induced tailoring of exchange bias effect in granular Ni1-xZnxO film. Phys. B 570, 229–231 (2019)

    CAS  Google Scholar 

  33. B. Gokul, P. Matheswaran, K.M. Abhirami, R. Sathyamoorthy, Structural and dielectric properties of NiO nanoparticles. J. Non-Cryst. Solids 363, 161–166 (2013)

    CAS  Google Scholar 

  34. K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. J. Alloys Compd. 509, 181–184 (2011)

    CAS  Google Scholar 

  35. S.P. Raja, C. Venkateswaran, Study of magnetic and electrical properties of nanocrystalline Mn doped NiO. J. Nanosci. Nanotechnol. 11, 2747–2751 (2011)

    CAS  Google Scholar 

  36. M. Yang, H. Pu, Q. Zhou, Q. Zhang, Transparent p-type conducting K-doped NiO films deposited by pulsed plasma deposition. Thin Solid Films 520, 5884–5888 (2012)

    CAS  Google Scholar 

  37. T. Dutta, P. Gupta, A. Gupta, J. Narayan, Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108, 083715-1-7 (2010)

    Google Scholar 

  38. N.S. Das, B. Saha, R. Thapa, G.C. Das, K.K. Chattopadhyay, Band gap widening of nanocrystalline nickel oxide thin films via phosphorus doping. Physica E 42, 1377–1382 (2010)

    CAS  Google Scholar 

  39. Z.G. Yang, L.P. Zhu, Y.M. Guo, Z.Z. Ye, B.H. Zhao, Preparation and band-gap modulation in MgxNi1-xO thin films as a function of Mg contents. Thin Solid Films 519, 5174–5177 (2011)

    CAS  Google Scholar 

  40. R. Sharma, A.D. Acharya, S. Moghe, S.B. Shrivastava, M. Gangrade, T. Shripathi, V. Ganesan, Effect of cobalt doping on microstructural and optical properties of nickel oxide thin films. Mater. Sci. Semicond. Proc. 23, 42–49 (2014)

    CAS  Google Scholar 

  41. W.L. Jang, Y.M. Lu, W.S. Hwang, W.C. Chen, Electrical properties of Li-doped NiO films. J. Eur. Ceram. Soc. 30, 503–508 (2010)

    CAS  Google Scholar 

  42. D.D. Dogan, Y. Caglar, S. Llican, M. Caglar, Investigation of structural, morphological and optical properties of nickel zinc oxide films prepared by sol-gel method. J. Alloys Compd. 509, 2461–2465 (2011)

    CAS  Google Scholar 

  43. R. Noonuruk, W. Techitdheera, W. Pecharapa, Characterization and ozone-induced coloration of ZnxNi1-xO thin films prepared by sol-gel method. Thin Solid Films 520, 2769–2775 (2012)

    CAS  Google Scholar 

  44. N. Giri, A. Mondal, S. Sarkar, R. Ray, Structural and dielectric properties of Zn1-xAlxO nanoparticles. AIP Conf. Proc. 1953, 050011-1-4 (2018)

    Google Scholar 

  45. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, X-ray analysis by williamson-hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)

    CAS  Google Scholar 

  46. A. Mondal, N. Giri, S. Sarkar, S. Majumdar, R. Ray, Tuning the photocatalytic activity of ZnO by TM (TM= Fe Co, Ni) doping. Mater. Sci. Semicond. Process. 91, 333–340 (2019)

    CAS  Google Scholar 

  47. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992)

    CAS  Google Scholar 

  48. V. Kirti, A review on variation in band energy of quantum dot with size. International Journal for Technological Research in Engineering Volume 6, Issue 11, July-2019, ISSN 2347-4718. https://ijtre.com/images/scripts/2019061117.pdf

  49. S. Sarkar, A. Mondal, K. Dey, R. Ray, Defect driven tailoring of colossal dielectricity of reduced graphene oxide. Mater. Res. Bull. 74, 465–471 (2016)

    CAS  Google Scholar 

  50. D. O’Neill, R.M. Bowman, J.M. Gregg, Dielectric enhancement and maxwell-wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77, 1520–1522 (2000)

    Google Scholar 

  51. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40(1), 1635–1639 (2014)

    CAS  Google Scholar 

  52. Y. Li, L. Fang, L. Liu, Y. Huang, C. Hu, Giant dielectric response and charge compensation of Li- and Co- doped NiO ceramics. Mater. Sci. Eng. B 177, 673–677 (2012)

    CAS  Google Scholar 

  53. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3. Appl. Phys. A 104, 1047–1051 (2011)

    CAS  Google Scholar 

  54. Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, Effect of holding time on the dielectric properties and non-ohmic behavior of CaCu3Ti4O12 capacitor-varistors. J. Mater. Sci. 24, 1994–1999 (2013)

    CAS  Google Scholar 

  55. L. Liu, H. Fan, L. Wang, X. Chen, P. Fang, Dc-bias-field-induced dielectric relaxation and ac conduction in CaCu3Ti4O12 ceramics. Phil. Mag. 88(4), 537–545 (2008)

    CAS  Google Scholar 

  56. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  57. V. Biju, M.A. Khadar, DC conductivity of consolidated nanoparticles of NiO. Mater. Res. Bull. 36, 21–23 (2001)

    CAS  Google Scholar 

  58. J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics. J. Adv. Dielectr. 6(1), 1650009 (2016)

    CAS  Google Scholar 

  59. J.C. Ronfard-Haret, J. Kossanyi, J.L. Pastol, Electroluminescence of the Er3+ion and electric conduction in polycrystalline ZnO: Mn, Bi, Er sintered pellets. J. Phys. Chem. Solids 62, 565–578 (2001)

    CAS  Google Scholar 

  60. S. Zheng, D. Shi, L. Liu, G. Li, Q. Wang, L. Fang, B. Elouadi, Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3 ceramics. J. Mater Sci. 25, 4058–4065 (2014)

    CAS  Google Scholar 

  61. Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Gaint dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int. 39, 6063–6068 (2013)

    CAS  Google Scholar 

  62. F. Han, S. Ren, J. Deng, T. Yan, X. Ma, B. Peng, L. Liu, Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J. Mater. Sci. 28(22), 17378–17387 (2017)

    CAS  Google Scholar 

  63. J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Dielectric relaxation behavior and mechanism of Y2/3Cu3Ti4O12 ceramic. Mater. Res. Bull. 88, 320–329 (2017)

    CAS  Google Scholar 

  64. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds. J. Alloys Compd. 653, 506–512 (2015)

    CAS  Google Scholar 

  65. N. Chihaoui, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, L.C. Costa, Dielectric relaxation of the Ca2MnO4-δ system. J. Alloys Compd. 577S, S483–S487 (2013)

    Google Scholar 

  66. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, Electrical conductivity and dielectric analysis of La0.75(Ca, Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J. Alloys Compd. 536, 173–178 (2012)

    CAS  Google Scholar 

  67. D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951)

    CAS  Google Scholar 

  68. S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)

    CAS  Google Scholar 

  69. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    CAS  Google Scholar 

  70. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics II. Direct current characteristics. J. Chem. Phys. 10, 98–105 (1942)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST, Government of India, for developing instrumental facilities like X-ray powder diffractometer (Bruker D8) and FESEM (JEOL, JSM-7610F) and LCR Meter (Agilent 4294A Precision Impedance Analyzer) under FIST programme at Jadavpur University. Authors would like to thank DHESTBT, Government of West Bengal (Project No. 426(Sanc.)/ST/P/S&T/16G-16/2018) and JU-RUSA 2.0 Major Research Support (Project No. R-11/468/19) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, N., Mondal, A., Sarkar, S. et al. Doping-induced dielectric and transport properties of Ni1−xZnxO. J Mater Sci: Mater Electron 31, 12628–12637 (2020). https://doi.org/10.1007/s10854-020-03813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03813-w

Navigation