Skip to main content
Log in

A simple analytical model for the resonant tunneling diode based on the transmission peak and scattering effect

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new analytical model for the current–voltage characteristic of a resonant tunneling diode (RTD) is presented herein, being derived from the basic integral of the Tsu–Esaki equation. The model is physics based and developed as a function of material parameters such as the effective mass, barrier heights, and Fermi levels as well as geometrical parameters such as the barrier height and well width. The material chosen for the double-barrier RTD structure is AlGaAs/GaAs. The dependence of the peak transmission on the applied voltage and the scattering effect in the active region, which are neglected in previous models, are also taken into account. The model is implemented and validated using numerical simulations, revealing that the resulting electrical characteristic is in good agreement with numerical simulations using the Green’s function formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goldhaber-Gordon, D., Montemarlo, M.S., Love, J.C., Optiteck, G.J., Ellenbogen, J.: “Overview of nanoelectronic devices. Proc. IEEE 85, 521–540 (1997)

    Article  Google Scholar 

  2. Ling, J.: Resonant tunneling diodes: theory of operation and applications, vol. 14627. University of Rochester, NY (2006)

    Google Scholar 

  3. Akeyoshi, T., Matsuzaki, H., Itoh, T., Waho, T., Osaka, J., Yamamoto, M.: Applications of resonant tunneling diodes to high-speed digital ICs. Proc. IEEE 87, 405–410 (1999)

    Article  Google Scholar 

  4. Lake, R., Datta, S.: Nonequilibrium Green’s function method applied to double barrier resonant tunneling diodes. Phys. Rev. B 45, 6670–6685 (1992)

    Article  Google Scholar 

  5. Jensen, K.L., Buot, F.A.: Effects of spacer layers on the Wigner function simulation resonant tunneling diodes. J. Appl. Phys. 65, 5248–8061 (1989)

    Article  Google Scholar 

  6. Frensley, W.R.: Wigner function model of a resonant tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1983)

    Article  Google Scholar 

  7. Bohm, D.: “A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  Google Scholar 

  8. Sun, J.P., et al.: Resonant tunneling diodes: model s and properties. Proc. IEEE 86, 641–661 (1998)

    Article  Google Scholar 

  9. Yan, Z., Deen, M.J.: New RTD large-signal DC model suitable for PSPICE. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 14, 167–172 (1995)

    Article  Google Scholar 

  10. Charles, E., Chang, P.M., Asbeck, K.-C.W., Elliott, R.B.: Analysis of heterojunction bipolar transistor/resonant tunneling diode logic for low power and high-speed digital applications. IEEE Trans. Electron Devices 40, 685–690 (1993)

    Article  Google Scholar 

  11. Schulman, J.N., De Los Santos, H.J.: Physics-based RTD current–voltage equation. IEEE Electron Device Lett. 17, 220–222 (1996)

    Article  Google Scholar 

  12. Buccafurri, E., Clerc, R., Calmon, F., Pala, M., Poncet, A., Ghibaudo, G.: Performances comparison of Si and GaAs based resonant tunneling diodes. Curr. Top. Solid State Phys. 6, 1408–1411 (2009)

    Google Scholar 

  13. Vladimir, M., &Artem, F.: Simplified Analytical Model of RTD. In 32nd International Spring Seminar on Electronics Technology (2009).

  14. Encomendero, J., Protasenko, V., Sensale-Rodriguez, B., Fay, P., Rana, F., Jena, D., Xing, H.G.: Broken symmetry effects due to polarization on resonant tunneling transport in double-barrier nitride heterostructures. Phys. Rev. Appl. 11, 034032 (2019)

    Article  Google Scholar 

  15. Weil, T., Vinter, B.: Equivalence between resonant tunneling and sequential tunneling in double barrier diodes. Appl. Phys. Lett. 50, 1281–1283 (1987)

    Article  Google Scholar 

  16. Harada, N., Kuroda, S.: Lifetime of resonant state in a resonant tunneling system. J. Appl. Phys. 25, L871–L873 (1986)

    Article  Google Scholar 

  17. Sun, J., Haddad, G., Mazumder, P., Schulman, J.: Resonant tunneling diodes: models and properties. Proc IEEE. 86, 641–660 (1998)

    Article  Google Scholar 

  18. Landau, L.D., Lifshitz, E.M. : Quantum mechanics, non-relativistic theory, theoretical physics, 2nd edition (1989).

  19. Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)

    Article  Google Scholar 

  20. Hong-Hyun, P., et al.: Resonant tunneling diode simulation with NEGF,” Available online at https://nanohub.org/tools/rtdnegf.

  21. Klimeck, G., Lake, R.K., Chris-Bowen, R., Frensley, W.R., Moise, T.: Quantum device simulation with a generalized tunneling formula. Appl. Phys. Lett. 67, 2539–2541 (1995)

    Article  Google Scholar 

  22. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge studies in semiconductor physics and microelectronics engineering (2005).

  23. Sollner, T.C.L.G., Tannenwald, P.E., Peck, D.D., Goodhue, W.D.: Quantum well oscillators. Appl. Phys. Lett. 45, 1319–1321 (1984)

    Article  Google Scholar 

  24. T. Figielski, A.et al.: Effect of the device size on the performance of resonant-tunneling diodes. In International Symposium on Electron Devices for Microwave and Optoelectronic Application (EDMO), Cat. No.01TH8567: 55–59, Austria (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Najeeb-ud-din.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.L., Najeeb-ud-din, H. A simple analytical model for the resonant tunneling diode based on the transmission peak and scattering effect. J Comput Electron 19, 1061–1067 (2020). https://doi.org/10.1007/s10825-020-01531-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01531-4

Keywords

Navigation