Skip to main content
Log in

Thin-Layer Drying Modeling in the Hot Oil-Heated Stenter

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Although the drying processes have an important place in the textile industry in terms of drying or various textile finishing applications, they are considered as an expensive process in terms of energy and time consumed. Therefore, it is of great importance to simulate with mathematical models the drying behavior of a stenter (ram machine), one of the most preferred convection dryers in the textile industry. For this purpose, in this study, modeling was attempted of the drying behavior of 67 % Cotton + 33 % Polyester containing Thessaloniki knit fabrics, using experimental data obtained from drying processes performed in 9 different drying operations in a 10-chamber hot oil-heated stenter and 12 different empirical and semi-empirical thin-layer models that are frequently used in the literature. R2 values from regression analysis were evaluated as the primary factor in the model fit selection. According to the results obtained, it was understood that the Diffusion Approach model with R2 values ranging from 0.9991 to 0.9999, Two Term Model with R2 values ranging from 0.9995 to 0.9999, and the Modified Henderson and Pabis model with R2 values ranging from 0.9995 to 0.9999 gave the most appropriate results upon simulating drying behavior. In this regard, this study, which contains explanatory information on the drying behavior in a stenter, is thought to be useful to researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Karakoca, Determination of Temperature Area in the Yarn Coil Drying Process by Finite Difference Method, MSc. Thesis (Namık Kemal University, Tekirdağ, 2017, In Turkish)

  2. A.S. Mujumdar, Handbook of Industrial Drying, Marcel Dekker, Handbook of Industrial Dryıng, (Inc. New York and Basel, 1995), pp. 1987

  3. R.T. Ogulata, F. D. Kadem, E. Koc, Drying methods and machines in textile, (IV. National Plumbing Engineering Congress and Exhibition, 4-7 November, Izmir, Turkey, 1999), pp. 803–809

  4. I. Tarakcioglu, Textile Finishing and Machines (Aegean University Textile Faculty Publications; Izmir, Turkey, 1996)

    Google Scholar 

  5. J. Ribeiro, J.M.P. Ventura, Dry. Technol. 13, 239 (1995)

    Article  Google Scholar 

  6. H.S. Lee, W.W. Carr, H.W. Beckham, J. Leisen, Int. J. Heat Mass Transf. 45, 357 (2002)

    Article  Google Scholar 

  7. M.M. Hussain, I. Dincer, Int. J. Heat Mass Transf. 46, 4033 (2003)

    Article  Google Scholar 

  8. C. Dietl, E.R.F. Winter, R. Viskanta, Int. J. Heat Mass Transf. 41, 3611 (1998)

    Article  Google Scholar 

  9. R.M. Santos, J.W.P.L. Ianos, M.B. Quadri, I.C.C. Rocha, Dry. Technol. 33, 37 (2015)

    Article  Google Scholar 

  10. G.B. Cinar, H. Ceylan, Therm. Science (2019). https://doi.org/10.2298/TSCI190510336C

    Article  Google Scholar 

  11. A.E. Akan, D.B. Özkan, Dry. Technol. (2019). https://doi.org/10.1080/07373937.2019.1662436

    Article  Google Scholar 

  12. A.E. Akan, D.B. Özkan, Therm. Science (2018). https://doi.org/10.2298/TSCI180315244A

    Article  Google Scholar 

  13. G. Johann, E.A. Silva, O.C. Motta Lima, N.C. Pereira, Br. J. Chem. Eng. 31, 959 (2014)

    Article  Google Scholar 

  14. A. Cay, G. Gurlek, N. Oglakcioglu, Dry Technol. 34, 509 (2017)

    Article  Google Scholar 

  15. J.W.P. Llanos, R.M. Santos, M.B. Quadri, I.O. Martins, Textile Res. J. (2020). https://doi.org/10.1177/0040517520918231

    Article  Google Scholar 

  16. Portable gas analyser device properties, http://www.mastertools.com.br/download_catalogo/testo%20454.pdf. Accessed 26 May 2020

  17. Fabric moisture measurement device properties, https://www.hans-schmidt.com/en/produkt-details/textile-moisture-meter-dht-3/. Accessed 26 May 2020

  18. Hygro thermometer properties, https://www.testo.com/en-TH/testo-635-1/p/0560-6351. Accessed 26 May 2020

  19. Fabric surface temperature measurement device properties, https://www.testo.com/en-ID/testo-176-t4/p/0572-1764. Accessed 26 May 2020

  20. Precision scales properties, https://www.terazideposu.com/urun/fly-300-gr-0-001-gr-hassas-terazi. Accessed 26 May 2020

  21. Drying-oven properties, http://elektro-mag.com/en/product/m-3025-p1. Accessed 26 May 2020

  22. Circular sample cutter properties, https://devotrans.com/round-shaped-sample-cutter-dvt-d100.html. Accessed 26 May 2020

  23. Thermal camera properties, https://static-int.testo.com/media/75/8b/e1f9f7a7efac/testo-875-Data-sheet.pdf. Accessed 26 May 2020

  24. Y.A. Cengel, J.M. Cimbala, Fundamentals of Fluid Mechanics and Applications, (Guven Publishing House, Translated by, T. Engin, Izmir, Turkey 2012)

  25. C.J. Geankoplis, Transport processes and separation process principles, 4th edn. (Prentice Hall, New Jersey, 2011). [Translate by S. Yapıcı]

    Google Scholar 

  26. V.T. Karathanos, J. Food Eng. 39, 337 (1999)

    Article  Google Scholar 

  27. P.W. Westerman, G.M. White, I.J. Ross, Trans. ASAE 16, 1136 (1973)

    Article  Google Scholar 

  28. G.E. Page, Factors influencing the maximum of air drying shelled corn in thin layer. USA (Prude University, Prude, 1949)

    Google Scholar 

  29. D.G. Overhults, H.E. White, H.E. Hamilton, I.J. Ross, Trans. ASAE 16, 112 (1973)

    Article  Google Scholar 

  30. S.M. Henderson, S. Pabis, J. Agric. Eng. Res. 6, 169 (1961)

    Google Scholar 

  31. O. Yaldiz, C. Ertekin, Dry. Technol. 19, 583 (2001)

    Article  Google Scholar 

  32. M. S. Rahman, O. Perera, C. The baud, Food Int. Res., 30, 485 (1998)

  33. O. Yaldiz, C. Ertekin, H.I. Uzun, Energy 26, 457 (2001)

    Article  Google Scholar 

  34. C.Y. Wang, R.P. Singh, ASAE Paper No: 78-3001, (1978)

  35. L.R. Verma, R.A. Bucklin, J.B. Endan, F.T. Wratten, Trans. ASAE 28, 296 (1985)

    Article  Google Scholar 

  36. A. Midilli, H. Kucuk, Z. Yapar, Dry. Technol. 20, 1503 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Erhan Akan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akan, A.E., Ünal, F. Thin-Layer Drying Modeling in the Hot Oil-Heated Stenter. Int J Thermophys 41, 114 (2020). https://doi.org/10.1007/s10765-020-02692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02692-x

Keywords

Navigation