Skip to main content

Advertisement

Log in

Fault zones in limestones: impact on karstogenesis and groundwater flow (Lez aquifer, southern France)

Zones de faille dans les calcaires: impact sur la karstogénèse et les écoulements d’eau souterraine (cas de l’aquifère du Lez, sud de la France)

Zonas de falla en calizas: impacto en la karstogénesis y el flujo de aguas subterráneas (acuífero de Lez, sur de Francia)

石灰岩中断层带对岩溶作用和地下水流的影响(法国南部Lez含水层)

Zonas de falha em calcários: impacto na carstogênese e no fluxo da água subterrânea (aquífero Lez, sul da França)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Lez aquifer in southern France comprises low-porosity karstified limestones and provides drinking water for ~400,000 inhabitants. Population growth and climate change have increased the stress on the water resources. In order to provide long-term protection and to optimize the water supply, the hydrogeology of the Lez aquifer must be better characterized. This study focused particularly on the St-Clément major fault zone (12 km long with a 500-m normal throw) which was structurally characterized using accurate geological mapping of the area, outcrops analysis and geophysics tools. The research highlights and explains the close relationship between the fault and the karstic occurrences. Moreover, tracer tests and piezometric head variations in boreholes have shown (1) strong interconnection between the observed karstic formations and (2) the major role of St-Clément fault on mass and pressure transfers in the aquifer. At the reservoir scale, the other major faults of the Lez aquifer, such as Corconne-Matelles or Gourg Noir faults, have shown some common morphologic and dynamic characteristics, and suggest a similar hydrogeological functioning. This study then extends this model to a larger scale. It proposes that, in aquifers of low-porosity carbonates, fault zones control the development of the main karstic network which, in turn, controls the main groundwater flows. Thus, faults should be reconsidered in order to improve the vulnerability studies and the quality of karstic aquifer modelling. Therefore, this report can contribute to protecting the groundwater resource, improving yields and optimizing groundwater supply exploitation in this type of aquifer.

Résumé

L’aquifère du Lez (sud de la France) est situé dans des calcaires karstifiés peu-poreux et alimente en eau potable environ 400,000 habitants. Cependant, la croissance démographique et le changement climatique entrainent une augmentation des tensions sur les ressources en eau. Afin de garantir une optimisation de l’exploitation et une protection de la ressource en eau à long terme, les caractéristiques hydrogéologiques de l’aquifère du Lez doivent être mieux connues. Cette étude s’est en particulier focalisée sur la faille majeure de St-Clément, longue de 12 km, avec un rejet normal de 500 m. Cette faille a été caractérisée structuralement via une cartographie géologique précise de la zone, des analyses d’affleurements ainsi que par l’utilisation d’outils géophysiques. Cette étude a permis de mettre en évidence et d’expliquer la relation forte entre la faille et la présence de karst. Par ailleurs, des tests de traçage et un suivi des variations piézométriques en forages ont montré (1) la forte interconnexion entre les formations karstiques observées et (2), le rôle prépondérant de la faille de St-Clément dans le transfert de matière et de pression au sein de l’aquifère. A l’échelle du réservoir, les autres failles majeures qui recoupent l’aquifère du Lez (telles que les failles de Corconne-Matelles et du Gourg Noir) ont montré des caractéristiques morphologiques et hydrodynamiques similaires, suggérant un fonctionnement hydrogéologique semblable. Cette étude permet donc d’étendre le modèle proposé à plus grande échelle. Elle propose ainsi que, dans les aquifères situés dans les carbonates de faible porosité, les zones de faille contrôlent le développement du réseau karstique principal, qui contrôle à son tour les principaux flux d’eau souterraine. De fait, les failles devraient être reconsidérées pour permettre d’améliorer les études de vulnérabilité ainsi que la qualité des modélisations d’aquifères karstiques. Par conséquent, ces travaux pourraient contribuer à la protection de la ressource en eau souterraine en améliorant les rendements d’exploitation de ce type d’aquifère.

Resumen

El acuífero de Lez, en el sur de Francia, está formado por calizas karstificadas de baja porosidad y proporciona agua potable a unos 400,000 habitantes. El crecimiento de la población y el cambio climático han aumentado la presión sobre los recursos hídricos. Con el fin de proporcionar una protección a largo plazo y optimizar el suministro de agua, la hidrogeología del acuífero de Lez debe estar mejor caracterizada. Este estudio se centró particularmente en la zona de la falla principal de St-Clément (12 km de largo con un rechazo de 500 m), que se caracterizó estructuralmente utilizando una cartografía geológica precisa de la zona, análisis de los afloramientos y herramientas geofísicas. La investigación pone de relieve y explica la estrecha relación entre la falla y las manifestaciones kársticas. Además, las pruebas de trazabilidad y las variaciones de la carga piezométrica en las perforaciones han demostrado: (1) la fuerte interconexión entre las formaciones kársticas observadas y (2) el importante papel de la falla de St-Clément en las transferencias de masa y presión en el acuífero. A escala del reservorio, las otras fallas importantes del acuífero de Lez, como las fallas de Corconne-Matelles o Gourg Noir, han mostrado algunas características morfológicas y dinámicas comunes, y sugieren un funcionamiento hidrogeológico similar. Este estudio amplía luego este modelo a una escala mayor. Propone que, en los acuíferos de carbonatos de baja porosidad, las zonas de falla controlan el desarrollo de la principal red kárstica que, a su vez, controla los principales flujos de aguas subterráneas. Así pues, las fallas deberían reconsiderarse para mejorar los estudios de vulnerabilidad y la calidad de la modelización de los acuíferos kársticos. Por lo tanto, este documento puede contribuir a proteger el recurso de aguas subterráneas, mejorar los rendimientos y optimizar la explotación del suministro de dichas aguas en este tipo de acuíferos.

摘要

法国南部的Lez含水层由低孔隙度的岩溶化的石灰岩组成,为约40万居民提供了饮用水。人口增长和气候变化增加了对水资源的压力。为了提供长期保护和优化供水,必须更好地表征Lez含水层的水文地质状况。本研究主要关注St-Clément主要断层带(长12 km,法向偏移500 m),该结构是基于该区域准确的地质填图,露头分析和地球物理工具来表征的。该研究突出并解释了断层与岩溶起源之间的密切关系。此外,示踪剂测试和井中的测压水头变化表明,(1)所观察到的岩溶层之间有很强的相互联系,(2)St-Clément断层对含水层中质量和压力传递的主要作用。在储层尺度,Lez含水层的其他主要断层,例如Corconne-Matelles断层或Gourg Noir断层,表现出一些共同的形态和动力学特征,并表明了类似的水文地质特征。然后,这项研究将这个模型扩展到更大的规模。研究得出,在低孔隙度碳酸盐岩的含水层中,断层带控制着主要岩溶网络的发展,而岩溶网络又控制着主要的地下水流。因此,应该重新考虑断层作用,以提高脆弱性研究和岩溶含水层建模的质量。因此,本文可为保护此类含水层中的地下水资源、提高开采量和优化地下水开发利用提供参考。

Resumo

O aquífero Lez, no sul da França, compreende calcários carstificados de baixa porosidade e que fornecem água potável para ~400,000 habitantes. O crescimento populacional e as mudanças climáticas aumentaram o estresse sobre os recursos hídricos. Para fornecer proteção a longo prazo e otimizar o suprimento de água, a hidrogeologia do aquífero Lez deve ser melhor caracterizada. Este estudo focou-se particularmente na zona de falha principal de St-Clément (12 km de comprimento com rejeito normal de 500 m), na qual foi caracterizada estruturalmente via mapeamento geológico preciso da área, análise de afloramentos e ferramentas geofísicas. A pesquisa destaca e explica a estreita relação entre a falha e as ocorrências cársticas. Ademais, testes com traçadores e variações de cargas piezométricas nos poços mostraram (1) forte interconexão entre as formações cársticas observadas e (2) o papel principal da falha de St-Clément nas transferências de massa e pressão no aquífero. Na escala do reservatório, as outras falhas principais do aquífero Lez, como as falhas Corconne-Matelles ou Gourg Noir, mostraram algumas características morfológicas e dinâmicas comuns e sugerem um funcionamento hidrogeológico semelhante. Este estudo estende esse modelo para uma escala maior. Ele propõe que, em aquíferos de carbonatos de baixa porosidade, as zonas de falhas controlam o desenvolvimento da principal rede cárstica que, por sua vez, controlam os principais fluxos de água subterrânea. Assim, as falhas devem ser reconsideradas a fim de melhorar os estudos de vulnerabilidade e a qualidade da modelagem do aquífero cárstico. Portanto, este artigo pode contribuir para a proteção dos recursos hídricos subterrâneos, melhorando a produtividade e otimizando a exploração do abastecimento de água subterrânea nesse tipo de aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agosta F, Kirschner DL (2003) Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy: fluid conduits in seismogenic normal faults. J Geophys Res: Solid Earth 108(B4). https://doi.org/10.1029/2002JB002013

  • Agosta F, Prasad M, Aydin A (2007) Physical properties of carbonate fault rocks, Fucino Basin (central Italy): implications for fault seal in platform carbonates. Geofluids 7:19–32. https://doi.org/10.1111/j.1468-8123.2006.00158.x

    Article  Google Scholar 

  • Agosta F, Alessandroni M, Antonellini M, Tondi E, Giorgioni M (2010) From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490:197–213

    Article  Google Scholar 

  • Alabouvette B, Demange M, Gueranze-Lozes J, Ambert P (2003) Carte géologique de la France 1/250000. Feuille de Montpellier [Geological map of France 1/250,000. Montpellier Area]. BRGM, Orléans, France

  • Andrieux J, Mattauer M, Tomasi P, Martinez C, Reille JL, Matte P, Bousquet JC, Raouf KA, Bel F, Verrier J, Bonnet M, Sauvel M (1971) Carte géologique de la France 1/50000. Feuille de Montpellier (n°990) [Geological map of France 1/50,000. Montpellier Area (No. 990)]. BRGM, Orléans, France

  • Arthaud F, Mattauer M (1969) Sur les décrochements NE–SW senestres, contemporains des plis pyrénéens du Languedoc [On the sinestral NE–SW strike-slip faults, contemporary of the Pyrenean folds in Languedoc]. CR Somm Soc géol Paris 8:290–291

  • Arthaud F, Matte P (1977) Synthèse provisoire sur l’évolution tectonique et les raccords entre les segments hercyniens situés autour du bassin nord-baléare: la Chaîne Varisque d’Europe moyenne occidentale [Provisional synthesis on the tectonic evolution and the connections between the Hercynian segments around the North Balearic basin: the Variscan chain of Western Europe]. Coll Inter CNRS Rennes 243:497–513

  • Arthaud F, Ogier M, Ségueret M (1980) Géologie et géophysique du Golfe du Lion et de sa bordure nord [Geological and geophysical study of the Golfe du Lion area and its northern border]. Bulletin du BRGM 175–193, BRGM, Orléans, France

  • Auzende JM, Bonnin J, Olivet JL (1973) The origin of the Western Mediterranean basin. J Geol Soc 129:607–620

  • Bakalowicz M (2014) Karst at depth below the sea level around the Mediterranean due to the Messinian crisis of salinity: hydrogeological consequences and issues. Geol Belgica 17(1):96–101

  • Ballas G, Fossen H, Soliva R (2015) Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. J Struct Geol 76:1–21. https://doi.org/10.1016/j.jsg.2015.03.013

    Article  Google Scholar 

  • Banton O, Cimon M-A, Seguin M-K (1997) Mapping field-scale physical properties of soil with electrical resistivity. Soil Sci Soc Am J 61:1010–1017. https://doi.org/10.2136/sssaj1997.03615995006100040003x

    Article  Google Scholar 

  • Barker RD (1979) Signal contribution sections and their use in resistivity studies. Geophys J Int 59:123–129. https://doi.org/10.1111/j.1365-246X.1979.tb02555.x

    Article  Google Scholar 

  • Bauer H, Schröckenfuchs TC, Decker K (2016) Hydrogeological properties of fault zones in a karstified carbonate aquifer (northern calcareous Alps, Austria). Hydrogeol J 24:1147–1170. https://doi.org/10.1007/s10040-016-1388-9

    Article  Google Scholar 

  • Benedicto A (1996) Modèles tectono-sédimentaires de bassins en extension et style structural de la marge passive du Golfe du Lion (partie nord), sud-est France [Tectonical and sedimentary models of the extensional basins and structural style of the Golfe du Lion passive margin (northern part), SE of France]. PhD Thesis, Université Montpellier 2, France

  • Benedicto A, Séguret M, Labaume P (1999) Interaction between faulting, drainage and sedimentation in extensional hanging-wall syncline basins: example of the Oligocene Matelles basin (Gulf of Lion rifted margin, SE France). Geol Soc London Spec Publ 156:81–108. https://doi.org/10.1144/GSL.SP.1999.156.01.06

    Article  Google Scholar 

  • Bérard P (1983) Alimentation en eau de la ville de Montpellier: captage de la source du Lez—etude des relations entre la source et son réservoir aquifère [Water supply of Montpellier: Lez Spring catchment—study of the relationship between the spring and its aquifer]. BRGM, Montpellier, France

  • Billi A (2005) Attributes and influence on fluid flow of fractures in foreland carbonates of southern Italy. J Struct Geol 27:1630–1643. https://doi.org/10.1016/j.jsg.2005.05.001

    Article  Google Scholar 

  • Billi A, Di Toro G (2008) Fault-related carbonate rocks and earthquake indicators: recent advances and future trends, chap 4. In: Rock mechanics: new research. Hauppauge, NY, 24 pp

  • Bodeur Y, Séguret M, Philip H, Puech JP, Mattei J, Mattauer M (1978) Carte géologique de la France 1/50000 - Feuille de St-Martin-de-Londres (n°963) [Geological map of France 1/50,000. St-Martin-de-Londres Area]. BRGM, Montpellier, France

  • Bouysse P, Ségoufin J, Jepsen HF, Pulvertaft TCR, Gaina C, Gernigon L, Grikurov GE, Leitchen G, Gohl K, Pubellier M, Rabaute A, Lagabrielle Y, Jolivet L, Iturralde-Vinent M, Robert A (2014) Geological map of the world. BRGM, Orléans

  • Brun J-F (1989a) Etude statistique des cavités karstiques de la région montpelliéraine (Causses méridionaux et Garrigues) [(Statistical study of the karstic caves in the northern Montpellier area]. Karstologia 14:31–39

  • Brun J-F (1989b) Le causse de Viols-le-Fort - Cazevieille, garrigues langedociennes, Hérault [The carbonate relief of Viols-le-Fort and Cazevieille, north Montpellier carbonate massif, Hérault]. Spelunca 36:31–38

  • Brunetti E, Jones JP, Petitta M, Rudolph DL (2013) Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol J 21:401–423. https://doi.org/10.1007/s10040-012-0918-3

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Celico F, Petrella E, Celico P (2006) Hydrogeological behaviour of some fault zones in a carbonate aquifer of southern Italy: an experimentally based model: hydrogeological behaviour of fault zones. Terra Nova 18:308–313. https://doi.org/10.1111/j.1365-3121.2006.00694.x

    Article  Google Scholar 

  • Choukroune P, Segueret M, Galdeano A (1973) Caractéristiques et évolution structurale des Pyrénées: un modèle de relations entre tectonique de plaques et Pyrénées [Characteristics and structural evolution of the Pyrenean chain: a relationship model between plate tectonics and Pyrenees]. Bull Soc Geol France 15:698–700

  • Clauzon V, Bekkal N, Lesparre N, Leonardi V, Hurmic A, Brunet P, Marchand P, Massonnat G, Jourde H (2016) Electrical resistivity tomography (ERT) as a tool for the assessment of karst features in carbonate aquifers. 43rd IAH International Congress Groundwater and society: 60 years of IAH, Montpellier, France, September 2016

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398. https://doi.org/10.1111/j.1365-2478.2004.00423.x

    Article  Google Scholar 

  • Dausse A (2015) Facteurs d’échelle dans la hiérarchisation des écoulements au sein d’un aquifère karstique: l’aquifère du Lez (Montpellier) [Scale factors in the distribution and ranking of the flow in a karstic aquifer: Lez aquifer (Montpellier area)]. PhD Thesis, Université de Montpellier, France

  • Dausse A, Leonardi V, Jourde H (2019) Hydraulic characterization and identification of flow-bearing structures based on multi-scale investigations applied to the Lez karst aquifer. J Hydrol 26:100627. https://doi.org/10.1016/j.ejrh.2019.100627

    Article  Google Scholar 

  • Dorfliger N, Jourde H, Ladouche B, Fleury P, Lachassagne P, Pistre S, Vestier A (2008) Active management resources of karstic water catchment: the example of Lez Spring (Montpellier, South of France). 13th IWRA conference, Montpellier, France, September 2008

  • Drogue C (1964) Contribution à l’étude géologique et hydrométrique des principales résurgences de la région nord montpelliéraine: sources du Lez, du Lirou et de Sauve [Geological and hydrogeological study of the main springs in the north Montpellier area: Lez, Lirou and Sauve springs]. PhD Thesis, Université Montpellier 2, Montpellier, France

  • Drogue C (1974) Structure de certains aquifères karstiques d’après les résultats de forages [Structure of some karstic aquifers based on drilling data]. C R Acad Sci Paris D:2621–2624

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley C, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575

    Article  Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Gallegos JJ, Hu BX, Davis H (2013) Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP. Hydrogeol J 21:1749–1760. https://doi.org/10.1007/s10040-013-1046-4

    Article  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139. https://doi.org/10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  • Hill ME, Stewart MT, Martin A (2010) Evaluation of the MODFLOW-2005 conduit flow process. Ground Water 48:549–559. https://doi.org/10.1111/j.1745-6584.2009.00673.x

    Article  Google Scholar 

  • Husson E (2013) Interaction géodynamique/karstification et modélisation géologique 3D des massifs carbonatées: implication sur la distribution prévisionnelle de la karstification—exemple des paléokarsts crétacés à néogènes du Languedoc montpelliérain [Geodynamic/karstification interaction and 3D modeling of some carbonate massifs: forecast results on the karst distribution—example of Cretaceous to Neogene paleokarsts in the north Montpellier area]. PhD Thesis, Université Montpellier 2, France

  • Intergovernmental Oceanographic Commission (2004) Submarine groundwater discharge: management implications, measurements and effects. UNESCO, Paris

  • Jeanne P, Guglielmi Y, Lamarche J, Cappa F, Marié L (2012) Architectural characteristics and petrophysical properties evolution of a strike-slip fault zone in a fractured porous carbonate reservoir. J Struct Geol 44:93–109

    Article  Google Scholar 

  • Jones WK (1977) Karst hydrology atlas of West Virginia. Karst Waters Institute, Charles Town, VA

    Google Scholar 

  • Jourde H, Flodin EA, Aydin A, Durlofsky LJ, Wen XH (2002) Computing permeability of fault zones in eolian sandstone from outcrop measurements. AAPG Bull 86:1187–1200

    Google Scholar 

  • Karam Y (1989) Essais de modélisation des écoulements dans un aquifère karstique. Exemple de la Source du Lez (Hérault, France) [Flow modeling in a karstic aquifer. The Lez Spring example (Hérault, France)]. PhD Thesis, Université Montpellier 2, France

  • Kim Y-S, Peacock DCP, Sanderson DJ (2004) Fault damage zones. J Struct Geol 26:503–517. https://doi.org/10.1016/j.jsg.2003.08.002

    Article  Google Scholar 

  • Kiraly L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques [Report on current knowledge about the physical characteristics of the karstic rocks]. Hydrogeol Karstic Terrains B:53–67

  • Kong-A-Siou L, Johannet A, Borrell V, Pistre S (2011) Complexity selection of a neural network model for karst flood forecasting: the case of the Lez Basin (southern France). J Hydrol 403:367–380. https://doi.org/10.1016/j.jhydrol.2011.04.015

    Article  Google Scholar 

  • Leonardi V, Jourde H, Dausse A, Dorfliger N, Brunet P, Maréchal JC (2013) Apport de nouveaux traçages et forages à la connaissance hydrogéologique de l’aquifère karstique du Lez [Contribution of new tracer tests and boreholes to the hydrogeological knowledge of the Lez karstic aquifer]. Karstologia 62:7–14

  • Lopez M (1992) Dynamique du passage d’un appareil terrigène à une plate-forme carbonatée en domaine semi-aride: le Trias de Lodève, sud de la France [Dynamics of transformation from a terrigenous sediment to a carbonate platform in a semi-arid context: the Triassic formations of the Lodève area, southern France]. PhD Thesis, Université Montpellier 2, France

  • Maréchal JC, Ladouche B, Batiot-Guilhe C, Borell-Estupina V, Caballero Y, Cernesson F, Dorfliger N, Fleury P, Jay-Allemand M, Jourde H, Leonardi V, Malaterre PO, Seidel JL, Vion PY (2014) Projet gestion multi-usages de l’hydrosystème karstique du Lez: synthèse des résultats et recommandations [Multipurpose management project of the Lez karstic hydrosystem: synthesis of the results and recommendations]. BRGM, Montpellier, France

  • Marjolet G, Salado J (1974) Etude hydrogéologique de la Source du Lez : rapport préliminaire sur les conclusions principales de l’étude sur la géologie et l’hydrogéologie du site du futur puits de captage des eaux de la Source du Lez pour la ville de Montpellier [Hydrogeological study of the Lez Spring: provisional report about the main conclusions on the geological et hydrogeological characteristics of the future pumping station for the drinking water supply of Montpellier]. CERGA, Grasse, France

  • Marjolet G, Salado J (1976) Contribution à l’étude de l’aquifère karstique de la source du Lez (Hérault) [Contribution to the study of the Lez karstic aquifer (Hérault)]. PhD Thesis, Université Montpellier 2, France

  • Martorana R, Capizzi P, D’Alessandro A, Luzio D (2017) Comparison of different sets of array configurations for multichannel 2D ERT acquisition. J Appl Geophys 137:34–48. https://doi.org/10.1016/j.jappgeo.2016.12.012

    Article  Google Scholar 

  • Matić N, Maldini K, Cuculić V, Frančišković-Bilinski S (2012) Investigations of karstic springs of the Biokovo Mt from the Dinaric karst of Croatia. Chemie der Erde - Geochemistry 72:179–190. https://doi.org/10.1016/j.chemer.2011.08.001

    Article  Google Scholar 

  • Mauffret A, Gennesseaux M (1989) Compression, décrochements et distension sur le pourtour méditerranéen nord-occiental [Compression, wrench and extension in the Mediterranean NW border]. C R Acad Sci Paris 10:960–967

  • Mayolle S, Soliva R, Caniven Y, Wibberley C, Ballas G, Milesi G, Dominguez S (2019) Scaling of fault damage zones in carbonate rocks. J Struct Geol 124:35–50. https://doi.org/10.1016/j.jsg.2019.03.007

    Article  Google Scholar 

  • Medici G, West L, Chapman P, Banwart S (2019a) Prediction of contaminant transport in fractured carbonate aquifer-types: case study of the Permian Magnesian Limestone Group (NE England, UK). Environ Sci Poll Res 26:. https://doi.org/10.1007/s11356-019-05525-z

  • Medici G, West LJ, Banwart SA (2019b) Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. J Contam Hydrol 222:1–16. https://doi.org/10.1016/j.jconhyd.2019.02.001

    Article  Google Scholar 

  • Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E, Fritsch JM, Ardoin-Bardin S, Thivet G (2013) Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol Sci J 58:498–518. https://doi.org/10.1080/02626667.2013.774458

    Article  Google Scholar 

  • Mudarra M, Andreo B, Marín AI, Vadillo I, Barberá JA (2014) Combined use of natural and artificial tracers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, southern Spain). Hydrogeol J 22:1027–1039. https://doi.org/10.1007/s10040-014-1117-1

    Article  Google Scholar 

  • Nunes JP, Jacinto R, Keizer JJ (2017) Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Sci Total Environ 584–585:219–233. https://doi.org/10.1016/j.scitotenv.2017.01.131

    Article  Google Scholar 

  • Paloc H (1987) Premiere évaluation des capacités de production d’eau par pompage du siphon amont de la grotte dite “du Grand Boulidou” [First assessment of the hydrogeological characteristics of the “Grand Boulidou” cave during a pumping test]. Commune des Matelles, Hérault. BRGM, Montpellier, France

  • Petit J-P, Mattauer M (1995) Paleostress superimposition deduced from mesoscale structures in limestone: the Matelles exposure, Languedoc, France. J Struct Geol 17:245–256

    Article  Google Scholar 

  • Pistre S, Lopez-Chicanob M, Pulido-Bosch A, Drogue C (1999) The role of western Mediterranean tectonic evolution in the geometry of a karstic domain in the Betic Cordilleras (Sierra Gorda, Spain): importance of a tardy extensional regime. Geodinamica Acta 12:11–24

  • PNUE/PAM Convention de Barcelone (2012) PNUE/ PAM: Etat de l’environnement marin et côtier de la Méditerranée [Situation of the marine and coastal environment of the Mediterranean Sea]. PNUE/PAM Convention de Barcelone, Athens, Greece

  • Saller S, Ronayne M, Long A (2013) Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeol J 21:1555–1566. https://doi.org/10.1007/s10040-013-1036-6

  • Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83:173–193. https://doi.org/10.1016/j.still.2004.10.004

    Article  Google Scholar 

  • Séranne M, Benedicto A, Labaume P, Truffertt C, Pascal G (1995) Structural style and evolution of the Gulf of Lion Oligo-Miocene rifting: role of the Pyrenean orogeny. Mar Pet Geol 12:809–820

    Article  Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc 133:191–213 https://doi.org/10.1144/gsjgs.133.3.0191

  • Sibson RH (1996) Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol 18:1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6

    Article  Google Scholar 

  • Sivelle V (2019) Couplage d’approches conceptuelles, systémiques et distribuées pour l’interprétation de traçages artificiels en domaine karstique: implications pour la détermination de la structure interne des aquifères karstiques [Conceptual, systemic and distributed approaches for the artificial tracer tests interpretation in karstic context: implication for the determination of the karstic aquifers internal structure]. PhD Thesis, UT3 Paul Sabatier University, Toulouse, France

  • Soliva R, Maerten F, Petit J-P, Auzias V (2010) Field evidences for the role of static friction on fracture orientation in extensional relays along strike-slip faults: comparison with photoelasticity and 3-D numerical modeling. J Struct Geol 32:1721–1731. https://doi.org/10.1016/j.jsg.2010.01.008

    Article  Google Scholar 

  • Steer P, Bigot A, Cattin R, Soliva R (2011) In-situ characterization of the effective elasticity of a fault zone, and its relationship to fracture spacing. J Struct Geol 33:1541–1553. https://doi.org/10.1016/j.jsg.2011.09.009

    Article  Google Scholar 

  • Storti F, Billi A, Salvini F (2003) Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth Planet Sci Lett 206:173–186. https://doi.org/10.1016/S0012-821X(02)01077-4

    Article  Google Scholar 

  • Teutsch G, Sauter M (1991) Groundwater modelling in karst terranes: scale effects, data acquisition and field validation. 3rd Conf. on Hydrology of Ground Water in Karst Terranes, Nashville, TN, December 1991, pp 17–38

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678. https://doi.org/10.1007/s10040-009-0489-0

    Article  Google Scholar 

  • Worthington SRH, Soley RWN (2017) Identifying turbulent flow in carbonate aquifers. J Hydrol 552:70–80. https://doi.org/10.1016/j.jhydrol.2017.06.045

    Article  Google Scholar 

  • Zuber A (1974) Isotope techniques in groundwater hydrology. IAEA, Vienna, pp 277–297

    Google Scholar 

Download references

Acknowledgements

We thank Frederic Hernandez and Remi Muller for their support in setting up the ERT profiles. The ERT material was loaned by the CRITEX equipment project. A special thanks to Clotilde Thomson for her help with the English. This report has been greatly improved thanks to the helpful recommendations of the journal editor, the associate editor and by detailed reviews of Giacomo Medici and another anonymous reviewer.

Funding

This work was funded by the Fault-Fluid project (collaboration contract No. 160184 between TOTAL and Université de Montpellier).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Clauzon.

Electronic supplementary material

ESM 1

(PDF 6114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clauzon, V., Mayolle, S., Leonardi, V. et al. Fault zones in limestones: impact on karstogenesis and groundwater flow (Lez aquifer, southern France). Hydrogeol J 28, 2387–2408 (2020). https://doi.org/10.1007/s10040-020-02189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02189-9

Keywords

Navigation