Skip to main content
Log in

Effects of Phenotypic Robustness on Adaptive Evolutionary Dynamics

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Theoretical and experimental studies have provided evidence for a positive role of phenotype resistance to genetic mutation in enhancing long-term adaptation to novel environments. With the aim of contributing to an understanding of the origin and evolution of phenotypic robustness to genetic mutations in organismal systems, we adopted a theoretical approach, elaborating on a classical mathematical formalizations of evolutionary dynamics, the quasispecies model. We show that a certain level of phenotypic robustness is not only a favourable condition for adaptation to occur, but also a required condition for short-term adaptation in most real organismal systems. This appears as a threshold effect, i.e. as a minimum level of phenotypic robustness (critical robustness) below which evolutionary adaptation cannot consistently occur or be maintained, even in the case of sizably selection coefficients and in the absence of any drift effect. These results, are in agreement with the observed pervasiveness of robustness at different levels of biological organization, from molecules to whole organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahnert, S. E. (2017). Structural properties of genotype–phenotype maps. Journal of the Royal Society Interface, 14(132), 20170275.

    Article  PubMed Central  CAS  Google Scholar 

  • Barve, A., & Wagner, A. (2013). A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature, 500(7461), 203.

    Article  CAS  PubMed  Google Scholar 

  • Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169(7), 1177–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull, J. J., Meyers, L. A., & Lachmann, M. (2005). Quasispecies made simple. PLoS Computational Biology, 1(6), e61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerf, R., & Dalmau, J. (2018). The quasispecies for the Wright–Fisher model. Evolutionary Biology, 45, 318–323.

    Article  Google Scholar 

  • Denver, D. R., Morris, K., Lynch, M., & Thomas, W. K. (2004). High mutation rate and predominance of insertions in the caenorhabditis elegans nuclear genome. Nature, 430(7000), 679.

    Article  CAS  PubMed  Google Scholar 

  • Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draghi, J. A., Parsons, T. L., & Plotkin, J. B. (2011). Epistasis increases the rate of conditionally neutral substitution in an adapting population. Genetics, 187(4), 1139–1152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake, J. W., Charlesworth, B., Charlesworth, D., & Crow, J. F. (1998). Rates of spontaneous mutation. Genetics, 148(4), 1667–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, J. S., & Palsson, B. O. (2000). Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress, 16(6), 927–939.

    Article  CAS  PubMed  Google Scholar 

  • Eigen, M., McCaskill, J., & Schuster, P. (1989). The molecular quasi-species. Advances in Chemichal Physics, 75, 149–263.

    CAS  Google Scholar 

  • Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Félix, M. A., & Barkoulas, M. (2015). Pervasive robustness in biological systems. Nature Reviews Genetics, 16(8), 483–496.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P. L. (2007). Stress-induced mutagenesis in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 42(5), 373–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 1540, 547–556.

    Article  Google Scholar 

  • Galhardo, R. S., Hastings, P. J., & Rosenberg, S. M. (2007). Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 42(5), 399–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G., & Reed, L. K. (2008). Cryptic genetic variation. Current Biology, 18(21), R989–R990.

    Article  CAS  PubMed  Google Scholar 

  • Gorodetsky, P., & Tannenbaum, E. (2008). Effect of mutators on adaptability in time-varying fitness landscapes. Physical Review E, 77(4), 042901.

    Article  CAS  Google Scholar 

  • Green, R. M., Fish, J. L., Young, N. M., Smith, F. J., Roberts, B., Dolan, K., et al. (2017). Developmental nonlinearity drives phenotypic robustness. Nature Communications, 8, 1970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen, T. F. (2006). The evolution of genetic architecture. Annual Review of Ecology, Evolution, and Systematics, 37, 123–157.

    Article  Google Scholar 

  • Hayden, E. J., Ferrada, E., & Wagner, A. (2011). Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature, 474(7349), 92–95.

    Article  CAS  PubMed  Google Scholar 

  • Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168(4), 2271–2284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C., et al. (2001). The strength of phenotypic selection in natural populations. The American Naturalist, 157(3), 245–261.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2019). Phenotypic plasticity, developmental instability, and robustness: The concepts and how they are connected. Frontiers in Ecology and Evolution, 7, 56.

    Article  Google Scholar 

  • Mathieson, I., & McVean, G. (2013). Estimating selection coefficients in spatially structured populations from time series data of allele frequencies. Genetics, 193(3), 973–984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, C., & Hansen, T. F. (2017). Evolvability and robustness: A paradox restored. Journal of Theoretical Biology, 430, 78–85.

    Article  PubMed  Google Scholar 

  • Nielsen, R., & Yang, Z. (2003). Estimating the distribution of selection coefficients from phylogenetic data with applications to mitochondrial and viral DNA. Molecular Biology and Evolution, 20(8), 1231–1239.

    Article  CAS  PubMed  Google Scholar 

  • Nijhout, H. F., & Davidowitz, G. (2003). Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In M. Polak (Ed.), Developmental instability: Causes and consequences (pp. 3–13). New York: Oxford University Press.

    Google Scholar 

  • Nilsson, M., & Snoad, N. (2002). Quasispecies evolution on a fitness landscape with a fluctuating peak. Physical Review E, 65(3), 031901.

    Article  CAS  Google Scholar 

  • Nowak, M. A. (2006). Evolutionary dynamics. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54(1), 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Orr, H. A. (2005). The genetic theory of adaptation: A brief history. Nature Reviews Genetics, 6(2), 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Pavlicev, M., & Wagner, G. P. (2012). A model of developmental evolution: Selection, pleiotropy and compensation. Trends in Ecology & Evolution, 27(6), 316–322.

    Article  Google Scholar 

  • Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution: International Journal of Organic Evolution, 62(1), 199–213.

    Google Scholar 

  • Payne, J. L., & Wagner, A. (2019). The causes of evolvability and their evolution. Nature Reviews Genetics, 20, 24–38.

    Article  CAS  PubMed  Google Scholar 

  • Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., & Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biology, 4(10), e309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raser, J. M., & O’Shea, E. K. (2005). Noise in gene expression: Origins, consequences, and control. Science, 309(5743), 2010–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reidys, C., Forst, C. V., & Schuster, P. (2001). Replication and mutation on neutral networks. Bulletin of Mathematical Biology, 63(1), 57–94.

    Article  CAS  PubMed  Google Scholar 

  • Rennell, D., Bouvier, S. E., Hardy, L. W., & Poteete, A. R. (1991). Systematic mutation of bacteriophage t4 lysozyme. Journal of Molecular Biology, 222(1), 67–88.

    Article  CAS  PubMed  Google Scholar 

  • Rigato, E., & Fusco, G. (2016). Enhancing effect of phenotype mutational robustness on adaptation in Escherichia coli. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 326(1), 31–37.

    Article  CAS  Google Scholar 

  • Rodrigues, J. F. M., & Wagner, A. (2009). Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Computational Biology, 5(12), e1000613.

    Article  CAS  Google Scholar 

  • Sasaki, A., & Nowak, M. A. (2003). Mutation landscapes. Journal of Theoretical Biology, 224(2), 241–247.

    Article  PubMed  Google Scholar 

  • Shikov, A. E., Skitchenko, R. K., Predeus, A. V., & Barbitoff, Y. A. (2020). Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Scientific Reports, 10(1), 1–10.

    Article  CAS  Google Scholar 

  • Sinha, N., & Nussinov, R. (2001). Point mutations and sequence variability in proteins: Redistributions of preexisting populations. Proceedings of the National Academy of Sciences USA, 98(6), 3139–3144.

    Article  CAS  Google Scholar 

  • Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Szamecz, B., Boross, G., Kalapis, D., Kovács, K., Fekete, G., Farkas, Z., et al. (2014). The genomic landscape of compensatory evolution. PLoS Biology, 12(8), e1001935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tachida, H. (2000). Dna evolution under weak selection. Gene, 261(1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, N., Poorthuis, P. H., & Hogeweg, P. (2005). Phenotypic error threshold; additivity and epistasis in RNA evolution. BMC Evolutionary Biology, 5(1), 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamuri, A. U., dos Reis, M., & Goldstein, R. A. (2012). Estimating the distribution of selection coefficients from phylogenetic data using sitewise mutation-selection models. Genetics, 190(3), 1101–1115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka, K. M., Hopfen, C., Herbert, M. R., Schlötterer, C., Stern, D. L., Masly, J. P., et al. (2015). Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana. Genetics, 200(1), 357–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turelli, M. (2017). Fisher’s infinitesimal model: A story for the ages. Theoretical Population Biology, 118, 46–49.

    Article  PubMed  Google Scholar 

  • Vachias, C., Fritsch, C., Pouchin, P., Bardot, O., & Mirouse, V. (2014). Tight coordination of growth and differentiation between germline and soma provides robustness for drosophila egg development. Cell Reports, 9(2), 531–541.

    Article  CAS  PubMed  Google Scholar 

  • Visscher, P. M., & Yang, J. (2016). A plethora of pleiotropy across complex traits. Nature Genetics, 48(7), 707.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A. (2005). Distributed robustness versus redundancy as causes of mutational robustness. Bioessays, 27(2), 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proceedings of the Royal Society of London B: Biological Sciences, 275(1630), 91–100.

    Google Scholar 

  • Wagner, A. (2011). The origins of evolutionary innovations: A theory of transformative change in living systems. Oxford: OUP.

    Book  Google Scholar 

  • Wagner, A. (2012). The role of robustness in phenotypic adaptation and innovation. Proceedings of the Royal Society of London B Biological Sciences, 279(1732), 1249–1258.

    Article  Google Scholar 

  • Wagner, A. (2013). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Wagner, G. P., & Zhang, J. (2011). The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews Genetics, 12(3), 204–213.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008). Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature, 452(7186), 470–472.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, B., & Lynch, M. (2018). Evolution and selection of quantitative traits. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Wang, Z., Liao, B. Y., & Zhang, J. (2010). Genomic patterns of pleiotropy and the evolution of complexity. Proceedings of the National Academy of Sciences, 107(42), 18034–18039.

    Article  CAS  Google Scholar 

  • White, J. K., Gerdin, A. K., Karp, N. A., Ryder, E., Buljan, M., Bussell, J. N., et al. (2013). Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell, 154(2), 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild, G., & Traulsen, A. (2007). The different limits of weak selection and the evolutionary dynamics of finite populations. Journal of Theoretical Biology, 247(2), 382–390.

    Article  PubMed  Google Scholar 

  • Wilke, C. O. (2005). Quasispecies theory in the context of population genetics. BMC Evolutionary biology, 5(1), 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, B., Altrock, P. M., Wang, L., & Traulsen, A. (2010). Universality of weak selection. Physical Review E, 82(4), 046106.

    Article  CAS  Google Scholar 

  • Zheng, J., Payne, J. L., & Wagner, A. (2019). Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science, 365(6451), 347–353.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by a Grant from the Italian Ministry of Education, University and Research (MIUR) to GF. Mihaela Pavlicev provided insightful comments on a previous version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Fusco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigato, E., Fusco, G. Effects of Phenotypic Robustness on Adaptive Evolutionary Dynamics. Evol Biol 47, 233–239 (2020). https://doi.org/10.1007/s11692-020-09506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09506-w

Keywords

Navigation