Skip to main content

Advertisement

Log in

Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Antimony is a toxic element whose concentration in soil and water has been rising due to anthropogenic activities. This study focuses on its accumulation in leaves of Dittrichia viscosa growing in soils of an abandoned Sb mine, and the effect on oxidant/antioxidant systems and photosynthetic efficiency. The results showed leaves to have a high Sb accumulation capacity. The amount of total chlorophyll decreased depending on Sb concentration and of carotenoids increased slightly, with a consequent increase in carotenoid/chlorophyll ratio. Photosynthetic efficiency was unaffected. The amount of O .−2 rose, although there was no increase in cell membrane damage, with lipid peroxidation levels being similar to normal. This response may be due to considerable increases that were observed in total phenolics, PPO activity, and enzymatic antioxidant system. SOD, POX, and DHAR activities increased in response to increased Sb amounts in leaves. The ascorbate/glutathione cycle was also affected, with strong increases observed in all of its components, and consequent increases in total contents of the ascorbate and glutathione pools. However, the ratio between reduced and oxidized forms declined, reflecting an imbalance between the two, especially that between GSH and GSSG. Efficient detoxification of Sb may take place either through increases in phenolics, carotenoids, and components of the glutathione–ascorbate cycle or through the enzymatic antioxidant system. Since Dittrichia viscosa accumulates large amounts of Sb without suffering oxidative damage, it could be used for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67–76.

    CAS  Google Scholar 

  • Álvarez-Ayuso, E., Otones, V., Murciego, A., García-Sánchez, A., & Santa, Regina I. (2013). Mobility and phytoavailability of antimony in an area impacted by a former stibnite mine exploitation. Science of the Total Environment, 449, 260–268.

    Google Scholar 

  • Anjum, N. A., Gill, S. S., Gill, R., Hasanuzzaman, M., Duarte, A. C., Pereira, E., et al. (2014). Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma, 251, 1265–1283.

    CAS  Google Scholar 

  • Anjum, N. A., Umar, S., Iqbal, M., & Khan, N. A. (2011). Cadmium causes oxidative stress in moongbean [Vigna radiata (L.) Wilcaek] by affecting antioxidant enzyme systems and ascorbate-glutathione cycle metabolism. Russian Journal of Plant Physiology, 58, 92–99.

    CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biololgy, 55, 373–399.

    CAS  Google Scholar 

  • Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.

    CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    CAS  Google Scholar 

  • Benhamdi, A., Bentellis, A., Rached, O., Du Laing, G., & Mechakra, A. (2014). Effects of antimony and arsenic on antioxidant enzyme activities two steppic plant species in an old antimony mining area. Biological Trace Elements Research, 158, 96–104.

    CAS  Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986) Bulk density. In: Klute, A., (Ed.), Methods of soil analysis, part 1. Physical and mineralogical methods, 2nd edn, Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison (pp. 363–382).

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Buck, R. P., Rondinini, S., Covington, A. K., Baucke, F. G. K., Brett, C. M. A., Camões, M. F., et al. (2002). Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Applied Chemistry, 74(11), 2169–2200.

    CAS  Google Scholar 

  • Cai, F., Ren, J., Tan, S., & Wang, S. (2016). Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedling. Environmental Pollution, 209, 169–176.

    CAS  Google Scholar 

  • Chai, L. Y., Mubarak, H., Yang, Z. H., Yong, W., Tang, C. J., & Mirza, N. (2016). Growth, photosynthesis and defense mechanism of antimnoy (Sb)-contaminated Boehmeria nivea (L). Environmental Science Pollution Research, 23(8), 7470–7481.

    CAS  Google Scholar 

  • Chai, L. Y., Wang, Y., Yang, Z. H., Mubarak, H., & Mirza, N. (2017). Physiological characteristics of Ficus tikoua under antimony stress. Transations of Nonferrous Metals Society of China, 27, 939–945.

    CAS  Google Scholar 

  • Cidu, R., Biddau, R., Dore, E., Vacca, A., & Marini, L. (2014). Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Science of the Total Environment, 497–498, 319–331.

    Google Scholar 

  • Clemente, R. (2013). Antimony. In B. J. Alloway (Ed.), Heavy metals in soils, trace metals and metalloids in soils and their bioavailability (3rd ed., pp. 494–506). Dordrecht: Springer.

    Google Scholar 

  • Corrales, I., Barceló, J., Bech, J., & Poschenrieder, C. (2014). Antimony accumulation and toxicity tolerance mechanisms in Trifolium species. Journal of Geochemical Exploration, 147, 167–172.

    CAS  Google Scholar 

  • Cos, P., Rajan, P., Vedernikiva, I., Calomme, M., Pieters, L., Vlietinck, A. J., et al. (2002). In vitro antioxidant profile of phenolic acid derivatives. Free Radical Research, 36, 711–716.

    CAS  Google Scholar 

  • De Gara, L., De Pinto, M. C., Moliterni, V. M. C., & D’Egidio, M. G. (2003). Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany, 54, 249–258.

    Google Scholar 

  • De Pinto, M. C., Francis, D., & De Gara, L. (1999). The redox state of ascorbate-dehydroascorbate pair as a specific sensor of cell división in tobacco TBY-2 cells. Protoplasma, 209, 90–97.

    Google Scholar 

  • Elliot, A. J., Scheiber, S. A., Thomas, C., & Pardini, R. S. (1992). Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochemical Pharmacology, 44(8), 1603–1608.

    Google Scholar 

  • Feigl, G., Lehotai, N., Molnár, A., Ördög, A., Rodríguez-Ruíz, M., Palma, J. M., et al. (2015). Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Annals of Botany, 116, 613–625.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., & Guo, J. (2013). The uptake and detoxification of antimony by plants: A review. Environmental and Experimental Botany, 96, 28–34.

    CAS  Google Scholar 

  • Feng, R., Wei, C., Tu, S., Wu, F., & Yang, L. (2009). Antimony accumulation and antioxidative responses in four fern plants. Plant and Soil, 317, 93–101.

    CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: A review focused on natural waters: I. Ocurrence. Earth-Science Reviews, 57(1–2), 125–176.

    CAS  Google Scholar 

  • Filella, M., Williams, P. A., & Belzile, N. (2009). Antimony in the environment: Knowns and unknowns. Environmental Chemistry, 6, 95–105.

    CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28, 1056–1071.

    CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2–18.

    CAS  Google Scholar 

  • Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany, 45(2), 105–114.

    CAS  Google Scholar 

  • Gálvez, M., Martín-Cordero, C., Houghton, P. J., & Ayuso, M. J. (2008). Antioxidant activity of methanol extracts obtained from Plantago species. Journal of Agricultural and Food Chemistry, 53, 1927–1933.

    Google Scholar 

  • Garrido, I., García-Sánchez, M., Casimiro, I., Casero, J., García-Romera, I., Ocampo, J. A., et al. (2012). Oxidative stress induced in sunflower seedling roots by aqueous dry olive-mill residues. PLoS ONE, 7(9), e46137.

    CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plantas. Plant Physiology and Biochemistry, 40, 909–930.

    Google Scholar 

  • Hawrylak-Nowak, B., Dresler, S., & Wójcik, M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Scientia Horticulturae, 172, 10–18.

    CAS  Google Scholar 

  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the Total Environment, 421–422, 41–50.

    Google Scholar 

  • Herath, I., Vithanage, M., & Bundschuh, J. (2017). Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmental Pollution, 223, 545–559.

    CAS  Google Scholar 

  • Hossain, M.A., Piyatida, P., Teixeira da Silva, J.A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, ID 872875.

  • Husson, O., Husson, B., Brunet, A., Babre, D., Alary, K., Sarthou, J. P., et al. (2016). Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems. Analytica Chimica Acta, 906, 98–109.

    CAS  Google Scholar 

  • Ji, Y., Sarret, G., Schulin, R., & Tandy, S. (2017). Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environmental Pollution, 231, 1322–1329.

    CAS  Google Scholar 

  • Jin, Y. H., Tao, D. L., Hao, Z. Q., Ye, J., Du, Y. J., Liu, H. L., et al. (2003). Enviromental stress and redox status of ascorbate. Acta Botanica Sinica, 45, 795–801.

    CAS  Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal induced oxidative stress defenses. International Journal of Molecular Sciences, 3, 3145–3175.

    Google Scholar 

  • Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., et al. (2015). Redox homeostasis in plants under abiotic stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2015.00013.

    Article  Google Scholar 

  • Karacan, M. S., Rodionova, M. V., Tunç, T., Venedik, K. B., Mamaş, S., Shitov, A. V., et al. (2016). Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase. Photosynthesis Research, 130, 1–16. https://doi.org/10.1007/s11120-016-0236-z.

    Article  CAS  Google Scholar 

  • Kim, D., Jeong, S. W., & Leo, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81, 321–326.

    CAS  Google Scholar 

  • Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell and Molecular Biology, 53(1), 15–25.

    CAS  Google Scholar 

  • Lehotai, N., Kolbert, Z., Petó, A., Feigl, G., Ördög, O., Kumar, D., et al. (2012). Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. Journal of Experimental Botany, 65, 5677–5687.

    Google Scholar 

  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.

    CAS  Google Scholar 

  • Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.

    CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.

    CAS  Google Scholar 

  • Murciego, A., García-Sánchez, A., Rodríguez-González, M. A., Pinilla, E., Toro, C., Cabezas, J., et al. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145, 15–21.

    CAS  Google Scholar 

  • Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 195, 389–397.

    Google Scholar 

  • Ning, Z., Xiao, T., & Xiao, E. (2015). Antimony in the soil-plant system in an Sb mining/smelting area of Southwest China. International Journal of Phytoremediation, 17, 1081–1089.

    CAS  Google Scholar 

  • Okkenhaug, G., Zhu, Y.-G., Luo, L., Lei, M., Li, X., & Mulder, J. (2011). Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environmental Pollution, 159, 2427–2434.

    CAS  Google Scholar 

  • Ortega, A., Garrido, I., Casimiro, I., & Espinosa, F. (2017). Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus L.) plants. PLoS ONE, 12(9), e0183991.

    Google Scholar 

  • Oxborough, K., & Baker, N. R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv′/Fm′, without measuring Fo´. Photosynthesis Research, 54, 135–142.

    CAS  Google Scholar 

  • Pan, X., Zhang, D., Chen, X., Bao, A., & Li, L. (2011). Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays, in response to antimony pollution in soil. Water, Air, and Soil pollution, 215, 517–523.

    CAS  Google Scholar 

  • Pérez-Sirvent, C., Martínez-Sánchez, M. J., Martínez-López, S., Bech, J., & Bolan, N. (2012). Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. Journal of Geochemical Exploration, 123, 128–135.

    Google Scholar 

  • Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219e234.

  • Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Barohona, E., Lachica, M., Ure, A. M., et al. (2000). Application of modified BCR sequential extraction (three step) procedure for the determination of extractable trace metal content in a sewage sludge amended soil reference material (CRM 483), complemented by a three year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228–233.

    CAS  Google Scholar 

  • Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177, 67–80.

    CAS  Google Scholar 

  • Samanta, A., Das, G., Das, S.K. (2011). Roles of flavonoids in plants. International Journal of Pharmaceutical Science and Technology, 6 (1).

  • Scandalios, J.G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995e1014.

  • Serafimovska, J. M., Arpadjan, S., Stafilov, T., & Tsckova, K. (2013). Study of the antimony species distribution in industrially contaminated soils. Journal of Soils and Sediments, 13(2), 294–303.

    CAS  Google Scholar 

  • Shantangeeva, I., Bali, R., & Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110, 40–45.

    Google Scholar 

  • Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: ID 217037.

  • Singh, A., Agrawai, M., & Marshall, F. M. (2010). The role of organic vs inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area. Ecological Engineering, 36, 1733–1740.

    Google Scholar 

  • Singh, V. P., Singh, S., Kumar, J., & Prasad, S. M. (2015). Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma, 252(3), 1217–1229.

    CAS  Google Scholar 

  • Singleton, V. L., Salgues, M., Zaya, J., & Troudsale, E. (1985). Caftaric acid disappearance and conversion to products of enzymatic oxidation in grape must and wine. American Journal of Enology and Viticulture, 36, 50–56.

    CAS  Google Scholar 

  • Spuller, C., Weigand, H., & Marb, C. (2007). Trace metal stabilization in a shooting range soil: Mobility and phytotoxicity. Journal of Hazardous Materials, 141, 378–387.

    CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., Gupta, K. (2006). Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hybrilla verticillarta (L.f.) Royle. Aquatic Toxicology, 80 (4), 405-415.

  • Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., & Dubey, R. S. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251, 1047–1065.

    CAS  Google Scholar 

  • Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J., & Grassi, G. (2007). Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the European Union. Version 2. EUR 21576 EN/2. Luxembourg, 2007, Office for Official Publications of the European Communities.

  • Sun, H., Yan, S. C., & Cheng, W. S. (2000). Interaction of antimony tartrate with the tripeptide glutathione. Implication for its mode of action. European Journal oif Biochemistry, 267, 5450–5457.

    CAS  Google Scholar 

  • Thipyapong, P., Hunt, M. D., & Steffens, J. C. (1995). Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 40, 673–676.

    CAS  Google Scholar 

  • Volkova, L. A., Urmatseva, V. V., & Burgutin, A. B. (2014). Stress-protective effect of phenylpropanoid complex on potato plants in vitro. Russian Journal of Plant Physiology, 61, 255–261.

    CAS  Google Scholar 

  • Waszczak, C., Carmody, M., & Kangasjärvi, J. (2018). Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209–236.

    CAS  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313.

    CAS  Google Scholar 

  • WHO. (2003). Antimony in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva: World Health Organization (WHO/SDE/WSH/03.04/74).

    Google Scholar 

  • Wysocki, R., Clemens, S., Augustyniak, D., Golik, P., Maciaszczyk, E., Tamás, M. J., et al. (2003). Metalloid tolerance base don phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochemical and Biophysical Research Communications, 304, 293–300.

    CAS  Google Scholar 

  • Xue, L., Ren, H., Li, S., Gao, M., Shi, S., Chang, E., et al. (2015). Comparative proteomic analysis in Miscanthus sinensis exposed to antimony stress. Environmental Pollution, 201, 150–160.

    CAS  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metals stress tolerance of plants. South African Journal of Botany, 76, 167–179.

    CAS  Google Scholar 

  • Yamasaki, H., Sakihama, Y., & Ikehara, N. (1997). Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiology, 115, 1405–1412.

    CAS  Google Scholar 

  • Zeng, B., Wang, F. J., Zhu, C., & Sun, Z. X. (2008). Effect of ascorbate-glutathione (AsA-GSH) cycle on Hg2+-tolerance in rice mutant. Acta Agronomica Sinica, 34(5), 823–830.

    CAS  Google Scholar 

  • Zhou, X., Sun, C., Zhu, P., & Liu, F. (2018). Effects of antimony stress on photosynthesis and growth of Acorus calamus. Frontiers in Plant Science, 9, 579.

    Google Scholar 

Download references

Acknowledgements

This study was made possible thanks to La Junta de Extremadura/FEDER for Research Project IB16078 and support given to Research Group FBCMP (GR18168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Espinosa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, I., Ortega, A., Hernández, M. et al. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves. Environ Geochem Health 43, 1367–1383 (2021). https://doi.org/10.1007/s10653-020-00616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00616-0

Keywords

Navigation