Skip to main content
Log in

Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The pheromone response and the high osmolarity glycerol (HOG) pathways are considered the prototypical MAPK signaling systems. They are the best-understood pathways in eukaryotic cells, yet they continue to provide insights in how cells relate with the environment. These systems are subjected to tight regulatory circuits to prevent hyperactivation in length and intensity. Failure to do this may be a matter of life or death specially for unicellular organisms such as Saccharomyces cerevisiae. The signaling pathways are fine-tuned by positive and negative feedback loops exerted by pivotal control elements that allow precise responses to specific stimuli, despite the fact that some elements of the systems are common to different signaling pathways. Here we describe the experimentally proven negative feedback loops that modulate the pheromone response and the HOG pathways. As described in this review, MAP kinases are central mechanistic components of these feedback loops. They have the capacity to modulate basal signaling activity, a fast extranuclear response, and a longer-lasting transcriptional process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC (2001) Regulation of the cell cycle progression by Swe1p and Hog1p following hyperosmotic stress. Mol Biol Cell 12:53–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvaro CG, Thorner J (2016) Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J Biol Chem 291:7788–7795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvaro CG, O’Donnell AF, Prosser DC, Augustine AA, Goldman A, Brodsky JL, Cyert MS, Wendland B, Thorner J (2014) Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein coupled receptor Ste2. Mol Cell Biol 34:2660–2681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apanovitch DM, Slep KC, Sigler PB, Dohlman HG (1998) Sst2 is a GTPase-activating protein for Gpa1: purification and characterization of a cognate RGS-Galpha protein pair in yeast. Biochemistry 37:4815–4822

    Article  PubMed  CAS  Google Scholar 

  • Ash J, Wu C, Larocque R, Jamal M, Stevens W, Osborne M, Thomas DY, Whiteway M (2003) Genetic analysis of the interface between Cdc42p and the CRIB domain of Ste20p in Saccharomyces cerevisiae. Genetics 163:9–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atay O, Skotheim JM (2017) Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol 216:317–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballon DR, Flanary PL, Gladue DP, Konopka JB, Dohlman HG, Thorner J (2006) DEP-domain-mediated regulation of GPCR signaling responses. Cell 126:1079–1093

    Article  PubMed  CAS  Google Scholar 

  • Bao MZ, Schwartz MA, Cantin GT, Yates JR, Madhani H (2004) Pheromone-dependent destruction of the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast. Cell 119:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardwell L, Cook JG, Chang EC, Cairns BR, Thorner J (1996) Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Mol Cell Biol 16:3637–3650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beese SE, Negishi T, Levin DE (2009) Identification of positive regulators of the yeast fps1 glycerol channel. PLoS Genet 5:e10000738

    Article  CAS  Google Scholar 

  • Behar M, Hoffmann A (2010) Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev 20:684–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behar M, Hao N, Dohlman HG, Elston TC (2008) Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Comput Biol 4:e1000197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya RP, Reményi A, Good MC, Bashor CJ, Falick AM, Lim WA (2006) The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311:822–826

    Article  PubMed  CAS  Google Scholar 

  • Blackwell E, Halatek IM, Kim HJ, Ellicott AT, Obukhov AA, Stone DE (2003) Effect of the pheromone-responsive Gα and phosphatase proteins of Saccharomyces cerevisiae on the subcellular localization of the Fus3 mitogen-activated protein kinase. Mol Cell Biol 23:1135–1150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackwell E, Kim HJ, Stone DE (2007) The pheromone-induced nuclear accumulation of the Fus3 MAPK in yeast depends on its phosphorylation state and on Dig1 and Dig2. BMC Cell Biol 8:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo- adaptation of yeast. Yeast 28:43–53

    Article  PubMed  CAS  Google Scholar 

  • Breitkreutz A, Tyers M (2002) MAPK signaling specificity: it takes two to tango. Trends Cell Biol 12:254–257

    Article  PubMed  CAS  Google Scholar 

  • Brewster JL, Gustin MC (2014) Hog1: 20 years of discovery and impact. Sci Signal 7:re7

    Article  PubMed  CAS  Google Scholar 

  • Bush A, Colman-Lerner A (2013) Quantitative measurement of protein relocalization in live cells. Biophys J 104:727–736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan RK, Otte CA (1982) Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol 2:11–20

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999–1011

    Article  PubMed  CAS  Google Scholar 

  • Chen CA, Manning DR (2001) Regulation of G proteins by covalent modifications. Oncogene 20:1643–1652

    Article  PubMed  CAS  Google Scholar 

  • Choi KY, Satterberg B, Lyons DM, Elion EA (1994) Ste5 tethers multiple protein kinases in the MAPkinase cascade required for mating in S. cerevisiae. Cell 78:499–512

    Article  Google Scholar 

  • Choudhury S, Baradaran-Mashinchi P, Torres MP (2018) Negative feedback phosphorylation of Gγ subunit Ste18 and the Ste5 scaffold synergistically regulates MAPK activation in yeast. Cell Rep 23:1504–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 482:63–76

    Article  CAS  Google Scholar 

  • DeFlorio R, Brett ME, Waszczak N, Apollinari E, Metodiev MV, Dubrovskyi O, Eddington D, Arkowitz RA, Stone DE (2013) Phosphorylation of Gβ is crucial for efficient chemotropism in yeast. J Cell Sci 126:2997–3009

    PubMed  CAS  Google Scholar 

  • Dewhurst HM, Choudhury S, Torres MP (2015) Structural analysis of PTM hotspots (SAPH-ire)—a quantitative informatics method enabling the discovery of novel regulatory elements in protein families. Mol Cell Proteomics 14:2285–2297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietzel C, Kurjan J (1987) The yeast SCG1 gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell 50:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Dihazi H, Kessler R, Eschrich K (2004) High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J Biol Chem 279:23961–23968

    Article  PubMed  CAS  Google Scholar 

  • Dohlman HG, Song J, Ma D, Courchesne WE, Thorner J (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol Cell Biol 16:5194–5209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K (1994) Msg5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drogen F, O’Rourke SM, Stucke VM, Jaquenoud M, Neiman AM, Peter M (2000) Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signaling in vivo. Curr Biol 10:630–639

    Article  PubMed  CAS  Google Scholar 

  • Dyjack N, Azeredo-Tseng C, Yildirim N (2017) Mathematical modeling reveals differential regulation of MAPK activity by phosphatase proteins in the yeast pheromone response pathway. Mol BioSyst 13:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Ekiel I, Sulea T, Jansen G, Kowalik M, Minailiuc O, Cheng J, Harcus D, Cygler M, Whiteway M, Wu C (2009) Binding the atypical RA domain of Ste50p to the unfolded Opy2p cytoplasmic tail is essential for the high-osmolarity glycerol pathway. Mol Cell Biol 20:5117–5126

    Article  CAS  Google Scholar 

  • Errede B, Ge QY (1996) Feedback regulation of MAP kinase signal pathways. Philos Trans R Soc Lond B Biol Sci 351:143–148

    Article  PubMed  CAS  Google Scholar 

  • Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G (1993) MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362:261–264

    Article  PubMed  CAS  Google Scholar 

  • Errede B, Vered L, Ford E, Pena MI, Elston TC (2015) Pheromone-induced morphogenesis and gradient tracking are dependent on the MAPK Fus3 binding to Gα. Mol Biol Cell 26:3343–3358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Davis NG (2000) Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase. Mol Cell Biol 20:563–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flotho A, Simpson DM, Qi M, Elion EA (2004) Localized feedback phosphorylation of Ste5p scaffold by associated MAPK cascade. J Biol Chem 279:47391–47401

    Article  PubMed  CAS  Google Scholar 

  • Garrison TR, Zhang Y, Pausch M, Apanovitch D, Aebersold R, Dohlman HG (1999) Feedback phosphorylation of an RGS protein by MAP kinase in yeast. J Biol Chem 274:36387–36391

    Article  PubMed  CAS  Google Scholar 

  • Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG (2007) A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway. Curr Biol 17:659–667

    Article  PubMed  CAS  Google Scholar 

  • Hao N, Zeng Y, Elston TC, Dohlman HG (2008) Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. J Biol Chem 283:33798–33802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison R, DeLisi C (2002) Condition specific transcription factor binding site characterization in Saccharomyces cerevisiae. Bioinformatics 18:1289–1296

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Oki M (2020) Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae. Curr Genet 66:335–344

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Zanolari B, Riezman H (1998) Cytoplasmic tail phosphorylation of the α-factor receptor is required for its ubiquitination and internalization. J Cell Biol 141:349–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschman JE, Jenness DD (1999) Dual lipid modification of the yeast Gγ subunit Ste18p determines membrane localization of Gβγ. Mol Cell Biol 19:7705–7711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie T, Tatebayashi K, Yamada R, Saito H (2008) Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high osmolarity glycerol osmoregulatory pathway. Mol Cell Biol 28:5172–5183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung W, Olson KA, Breitkreutz A, Sadowski I (1997) Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. Eur J Biochem 245:241–251

    Article  PubMed  CAS  Google Scholar 

  • Jackson CL, Hartwell LH (1990) Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63:1039–1051

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE (2013) MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27:2590–2601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Liu L, Levin DE (2019) Stressing out or stressing in: intracellular pathways for SAPK activation. Curr Genet 65:417–421

    Article  PubMed  CAS  Google Scholar 

  • Leeuw T, Wu C, Schrag JD, Whiteway M, Thomas DY, Leberer E (1998) Interaction of a G-protein β-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391:191–195

    Article  PubMed  CAS  Google Scholar 

  • Li E, Cismowski MJ, Stone DE (1998) Phosphorylation of the pheromone-responsive Gβ protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function. Mol Gen Genet 258:608–618

    Article  PubMed  CAS  Google Scholar 

  • Macia J, Regot S, Peeters T, Conde N, Sole R, Posas F (2009) Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci Signal 2:ra13

    Article  PubMed  Google Scholar 

  • Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    Article  PubMed  CAS  Google Scholar 

  • Maeder CI, Hink MA, Kinkhabwala A, Mayr R, Bastiaens PI, Knop M (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Maleri S, Ge Q, Hackett EA, Wang Y, Dohlman HG, Errede B (2004) Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol Cell Biol 24:9221–9238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malleshaiah MK, Shahrezaei V, Swain PS, Michnick SW (2010) The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature 465:101–105

    Article  PubMed  CAS  Google Scholar 

  • Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16

    Article  PubMed  CAS  Google Scholar 

  • Mattison CP, Ota IM (2000) Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 14:1229–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlini L, Dudin O, Martin SG (2013) Mate and fuse: how cells do it. Open Biol 3:130008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metodiev MV, Matheos D, Rose MD, Stone DE (2002) Regulation of MAPK function by direct interaction with the mating-specific Gα in yeast. Science 296:1483–1486

    Article  PubMed  CAS  Google Scholar 

  • Mitrophanov AY, Groisman EA (2008) Positive feedback in cellular control systems. BioEssays 30:542–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami Y, Tatebayashi K, Saito H (2008) Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Mol Cell Biol 28:2481–2494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutlu N, Kumar A (2019) Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet 65:119–125

    Article  PubMed  CAS  Google Scholar 

  • Nakafuku M, Itoh H, Nakamura S, Kaziro Y (1987) Ocurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the α subunit of mammalian G proteins. Proc Natl Acad Sci USA 84:2140–2144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakayama N, Miyajima A, Arai K (1985) Nucleotide sequences of STE2 and STE3 cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4:2643–2648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nern A, Arkowitz RA (1999) A Cdc24p-Far1p-Gβγ protein complex required for yeast orientation during mating. J Cell Biol 144:1187–1202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Rourke SM, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15:532–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Offley SR, Schmidt MC (2018) Protein phosphatases of Saccharomyces cerevisiae. Curr Genet 65:41–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell SC, Marotti LA Jr, Kiang L, Torres MP, Borchers CH, Dohlman HG (2005) Phosphorylation of the RGS protein Sst2 by the MAP kinase Fus3 and use of Sst2 as a model to analyze determinants of substrate sequence specificity. Biochemistry 44:8159–8166

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Ahuir A, Manzanares-Estreder S, Timón-Gómez A, Proft M (2017) Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress. Curr Genet 64:63–69

    Article  PubMed  CAS  Google Scholar 

  • Petelenz-Kurdziel E, Kuehn C, Nordlander B, Klein D, Hong KK, Jacobson T, Dahl P, Schaber J, Nielsen J, Hohmann S, Klipp E (2013) Quantitative analysis of glycerol accumulation, glycolysis and growth under hyperosmotic stress. PLoS Comput Biol 9:e1003084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAKKK: scaffold role of Pbs2p MAPKK. Science 276:1702–1705

    Article  PubMed  CAS  Google Scholar 

  • Posas F, Saito H (1998) Activation of the yeast Ssk2 MAP kinase kinase kinase by the Ssk1 two-component response regulator. EMBO J 17:1385–1394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875

    Article  PubMed  CAS  Google Scholar 

  • Prosser DC, Pannunzio AE, Brodsky JL, Thorner J, Wendland B, O’Donnell AF (2015) α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis. J Cell Sci 128:4220–4234

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pryciak PM, Huntress FA (1998) Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβ-γ complex underlies activation of the yeast pheromone response pathway. Genes Dev 12:2684–2697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reiser V, Ruis H, Ammerer G (1999) Kinase activity dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reneke JE, Blumer KJ, Courchesne WE, Thorner J (1988) The carboxy-terminal segment of the yeast a-factor receptor is a regulatory domain. Cell 55:221–234

    Article  PubMed  CAS  Google Scholar 

  • Repetto MV, Winters MJ, Bush A, Reiter W, Hollenstein DM, Ammerer G, Pryciak PM, Colman-Lerner A (2018) CDK and MAPK synergistically regulate signaling dynamics via a shared multi-site phosphorylation region on the scaffold protein Ste5. Mol Cell 69:938–952

    Article  PubMed  CAS  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R (2017) The yeast phosphorelay systems: a comparative view. World J Microbiol Biotechnol 33:111

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Sitaraman R (2016) Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway. Microbiology 162:1511–1526

    Article  PubMed  CAS  Google Scholar 

  • Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksör M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39:1547–1556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaber J, Baltanas R, Bush A, Klipp E, Colman-Lerner A (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8:622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schandel KA, Jenness DD (1994) Direct evidence for ligand induced internalization of the yeast α-factor pheromone receptor. Mol Cell Biol 14:7245–7255

    PubMed  PubMed Central  CAS  Google Scholar 

  • Segall JE (1993) Polarization of yeast cells in spatial gradients of alpha mating factor. Proc Natl Acad Sci USA 90:8332–8336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharifian H, Lampert F, Stojanovski K, Regot S, Vaga S, Buser R, Lee SS, Koeppl H, Posas F, Pelet S, Peter M (2015) Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade. Integr Biol (Camb) 7:412–422

    Article  CAS  Google Scholar 

  • Shimada Y, Gulli MP, Peter M (2000) Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating. Nat Cell Biol 2:117–124

    Article  PubMed  CAS  Google Scholar 

  • Siekhaus DE, Drubin DG (2003) Spontaneous receptor-independent heterotrimeric G-protein signalling in an RGS mutant. Nat Cell Biol 5:231–235

    Article  PubMed  CAS  Google Scholar 

  • Tamás MJ, Luyten K, Sutherland FC, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    Article  PubMed  Google Scholar 

  • Tamás MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472:159–165

    Article  PubMed  Google Scholar 

  • Tamás MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydstrom J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337–6345

    Article  PubMed  Google Scholar 

  • Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H (2014) Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal 7(314):ra21

    Article  PubMed  CAS  Google Scholar 

  • Tatebayashi K, Takekawa M, Saito H (2003) A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22:3624–3634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T, Imai M, Saito H (2007) Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J 26:3521–3533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tedford K, Kim S, Sa D, Stevens K, Tyers M (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7:228–238

    Article  PubMed  CAS  Google Scholar 

  • Thorsen M, Di Y, Tängemo C, Morillas M, Ahmadpour D, Van der Does C, Wagner A, Johansson E, Boman J, Posas F, Wysocki R, Tamás MJ (2006) The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17:4400–4410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres MP, Clement ST, Cappell SD, Dohlman HG (2011) Cell cycle-dependent phosphorylation and ubiquitination of a G protein α subunit. J Biol Chem 286:20208–20216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toshima JY, Nakanishi J, Mizuno K, Toshima J, Drubin DG (2009) Requirements for recruitment of a G protein-coupled receptor to clathrin-coated pits in budding yeast. Mol Biol Cell 20:5039–5050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vázquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodríguez-González M, de Nadal E, Posas F, Coria R (2018) Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. FEBS J 285:1079–1096

    Article  PubMed  CAS  Google Scholar 

  • Warmka J, Hanneman J, Lee J, Amin D, Ota I (2001) Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 21:51–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. Proc Natl Acad Sci USA 105:12212–12217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, MacKay VL (1989) The Ste4 and Ste18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477

    Article  PubMed  CAS  Google Scholar 

  • Winters MJ, Pryciak PM (2018) MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Mol Biol Cell 30:1037–1049

    Article  Google Scholar 

  • Wu C, Jansen G, Zhang J, Thomas DY, Whiteway M (2006) Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev 20:734–746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yablonski D, Marbach I, Levitzki A (1996) Dimerization of Ste5, a mitogen-activated protein kinase cascade scaffold protein, is required for signal transduction. Proc Natl Acad Sci USA 93:13864–13869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamamoto K, Tatebayashi K, Tanaka K, Saito H (2010) Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor. Mol Cell 40:87–98

    Article  PubMed  CAS  Google Scholar 

  • Young C, Mapes J, Hanneman J, Al-Zarban S, Ota I (2002) Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot Cell 1:1032–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu RC, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, Holl M, Benjamin K, Gordon A, Brent R (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhan XL, Deschenes RJ, Guan KL (1997) Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev 11:1690–1702

    Article  PubMed  CAS  Google Scholar 

  • Zuzuarregui A, Li T, Friedmann C, Ammerer G, Alepuz P (2015) Mbs2 is a Ste11 membrane concentrator required for full activation of the HOG pathway. Biochim Biophys Acta 1849:722–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

V.-I.A. was a PhD student of the Biochemical Sciences Program, UNAM. Supported by grant IN210519 from PAPIIT, DGAPA, UNAM to RC. We acknowledge Patrick Weill for the revision of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Coria.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Ibarra, A., Rodríguez-Martínez, G., Guerrero-Serrano, G. et al. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast. Curr Genet 66, 867–880 (2020). https://doi.org/10.1007/s00294-020-01089-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-020-01089-5

Keywords

Navigation