Skip to main content
Log in

Probabilistic hazard maps for operational use: the case of SO2 air pollution during the Holuhraun eruption (Bárðarbunga, Iceland) in 2014–2015

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Holuhraun fissure eruption (Iceland) in 2014–2015, which originated from the Bárðarbunga volcanic system, was exceptional in several respects. It lasted 6 months and, throughout its duration, it released up to 9.6 Mt of SO2 in the atmosphere. The main recorded hazard affecting the entire country over the 6 months was the constant presence of a low-level gas cloud that led to recurrent air pollution episodes. The Icelandic Meteorological Office responded to this human health hazard by (1) setting up a forecasting system to anticipate the distribution of SO2 over Iceland and (2) preparing probabilistic hazard maps to support the decisions taken by the Icelandic Civil Protection in demarcating the accessible area around the eruption site. This paper introduces some technical aspects of the application of the CALPUFF numerical model to this eruption like the SO2 dispersal forecasting setup, the volcanic source numerical description, and the Monte Carlo procedure adopted for the creation of the probabilistic hazard maps. CALPUFF-based maps were created in January 2015, when the eruption was still ongoing, with the assumption that the eruption would be continuing with the same intensity. Maps for the entire country and for a smaller domain were produced, the latter showing the likelihood to exceeding an hourly concentration of 2600 μg/m3 (1 ppm) of SO2 for the spring season, a level chosen by the Icelandic Civil Protection for the delineation of the area of restricted access around the eruption site. As during the eruption there was no time for a rigorous evaluation of the model accuracy, we then undertook a retrospective analysis of CALPUFF model performance comparing the forecasted hourly SO2 concentration with real-time measurements at key-sites. The model did reproduce the hourly observations (the maximum within a 24-running window) with a level of agreement of 50.6% in Mývatn (85 km from the eruption site) and 50.4% in Reykjavík (258 km), when instances of null pairs have been removed. In Mývatn, the model overestimated the concentration more than 22% of the time. In Höfn (104 km), the model accuracy is 81.7% and occurrences of underestimation are higher than 11% of the time. In Reyðarfjörður (at 124 km), the model accuracy is assessed to be 82.7% and the model overestimates occurring 15.1% of the time. Possible explanations for the observed mismatch between model results and measurements include the spatial resolution of meteorological data field, the capability into reproducing chemical reactions of SO2 in atmosphere, and the reduced extension of the numerical domain. In addition, the model performance is strongly dependent on the source descriptors (e.g., strength of the SO2 flux and injection height) that, in this contribution, have been kept constant over long periods—neglecting, in this way, the natural variability of a dynamic emission of SO2. This consideration points toward the need of frequent and high-quality observation data for the initialization of dispersal numerical model. In light of this retrospective analysis, the probabilistic hazard maps possibly over-estimated the area exposed to high level of SO2 concentration. All the same, this paper reports on how quantitative probabilistic hazard mapping can be used for mitigating the health risk of volcanic SO2 emissions during a volcanic crisis to the benefit of operational hazard monitoring in support an effective crisis response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul-Wahab S, Sappurd A, Al-Damkhi A (2011) Application of California Puff (CALPUFF) model: a case study for Oman. Clean Techn Environ Policy 13(1):177–189

    Google Scholar 

  • Araña V, Felpeto A, Astiz M, Garcıa A, Ortiz R, Abella R (2000) Zonation of the main volcanic hazards (lava flows and ash fall) in Tenerife, Canary Islands. A proposal for a surveillance network. J Volcanol Geotherm Res 103(1–4):377–391

    Google Scholar 

  • Banta R, Olivier L, Gudiksen P, Lange R (1996) Implications of small-scale flow features to modeling dispersion over complex terrain. J Appl Meteorol 35(3):330–342

    Google Scholar 

  • Barsotti S, Neri A (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 2. Application to the weak Mount Etna plume of July 2001. J Geophys Res Solid Earth 113(B3)

  • Barsotti S, Neri A, Scire J (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation. J Geophys Res Solid Earth 113(B3)

  • Barsotti S, Di Rienzo DI, Thordarson T, Björnsson BB, Karlsdóttir S (2018) Assessing impact to infrastructures due to tephra fallout from Öræfajökull Volcano (Iceland) by using a scenario-based approach and a numerical model. Front Earth Sci 6. https://doi.org/10.3389/feart.2018.00196

  • Barsotti S, Oddsson B, Gudmundsson MT, Pfeffer MA, Parks MM, Ófeigsson BG, Sigmundsson F, Reynisson V, Jónsdóttir K, Roberts MJ, Heiðarsson EP, Jónasdóttir EB, Einarsson P, Jóhannsson T, Gylfason ÁG, Vogfjörd K (2020) Operational response and hazards assessment during the 2014–2015 volcanic crisis at Bárðarbunga volcano and associated eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 390:106753. https://doi.org/10.1016/j.jvolgeores.2019.106753

    Article  Google Scholar 

  • Berrisford P, Dee D, Poli P, Brugge R, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S, Simmons A (2011) The ERA-Interim archive, version 2.0.

  • Bianconi R, Mosca S, Graziani G (1999) PDM: a Lagrangian particle model for atmospheric dispersion. European Commission

  • Biasse S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Nat Hazards Earth Syst Sci 14(8):2265–2287

    Google Scholar 

  • Blumen W (2016) Atmospheric processes over complex terrain, vol 23. Springer

  • Boichu, M., Menut, L., Khvorostyanov, D., Clarisse, L., Clerbaux, C., Turquety, S., & Coheur, P.-F. (2013) Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallajökull eruption case-study.

    Google Scholar 

  • Boichu M, Chiapello I, Brogniez C, Péré J-C, Thieuleux F, Torres B, Blarel L, Mortier A, Podvin T, Goloub P (2016) Tracking far-range air pollution induced by the 2014–15 Bárdarbunga fissure eruption (Iceland). Atmos Chem Phys Discuss, Doi, 10.

  • Calder E, Wagner K, Ogburn SE (2015) Volcanic hazard maps. In: Vye-Brown C, Brown SK, Sparks S, Loughlin SC, Jenkins SF (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge Core, pp 335–342. https://doi.org/10.1017/CBO9781316276273.022

    Chapter  Google Scholar 

  • Carlsen HK, Valdimarsdottir U, Briem H, Dominici F, Finnbjornsdottir R, Johannsson T, Aspelund T, Gislason T, Gudnason T (2019) Severe volcanic SO2 exposure and respiratory morbidities in the Icelandic population-a register study. MedRxiv 19013474

  • Choi H, Zhang Y, Takahashi S (2004) Recycling of suspended particulates by the interaction of sea-land breeze circulation and complex coastal terrain. Meteorog Atmos Phys 87(1–3):109–120

    Google Scholar 

  • Costa A, Macedonio G, Chiodini G (2005) Numerical model of gas dispersion emitted from volcanic sources. Ann Geophys 48(4–5)

  • de’Michieli Vitturi M, Tarquini S (2018) MrLavaLoba: a new probabilistic model for the simulation of lava flows as a settling process. J Volcanol Geotherm Res 349:323–334. https://doi.org/10.1016/j.jvolgeores.2017.11.016

  • Dipartimento della Protezione Civile Italiana (2014) Map of red zone—Campi Flegrei. http://www.protezionecivile.gov.it/documents/20182/0/CAMPI_FLEGREI_zona_rossa_31032015.pdf/11ade57f-92b7-4bc9-8e35-19b3241ad657. Accessed 16 June 2020

  • Dipertimento della Protezione Civile Italiana (2015) Yellow zone—Campi Flegrei. http://www.protezionecivile.gov.it/documents/20182/0/Allegato_1_delibera_zona_gialla_flegrei.pdf/4220a109-34be-46ae-946d-53469gere6b8891

  • Environmental Agency of Iceland (2014) Health effects of short-term volcanic exposure and reccommended actions. https://www.almannavarnir.is/utgefid-efni/health-effects-of-short-term-volcanic-so2-exposure/?wpdmdl=22644. Accessed 16 June 2020

  • Favalli M, Chirico GD, Papale P, Pareschi MT, Boschi E (2009a) Lava flow hazard at Nyiragongo volcano, DRC. Bull Volcanol 71(4):363–374

    Google Scholar 

  • Favalli M, Tarquini S, Fornaciai A, Boschi E (2009b) A new approach to risk assessment of lava flow at Mount Etna. Geology 37(12):1111–1114

    Google Scholar 

  • Felpeto A, Araña V, Ortiz R, Astiz M, García A (2001) Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazards 23(2–3):247–257

    Google Scholar 

  • Fisher AL, Parsons MC, Roberts SE, Shea PJ, Khan FI, Husain T (2003) Long-term SO2 dispersion modeling over a coastal region. Environ Technol 24(4):399–409. https://doi.org/10.1080/09593330309385574

    Article  Google Scholar 

  • Galeczka I, Eiriksdottir ES, Pálsson F, Oelkers E, Lutz S, Benning LG, Stefánsson A, Kjartansdóttir R, Gunnarsson-Robin J, Ono S (2017) Pollution from the 2014–15 Bárðarbunga eruption monitored by snow cores from the Vatnajökull glacier, Iceland. J Volcanol Geotherm Res 347:371–396

    Google Scholar 

  • Gesch DB, Verdin KL, Greenlee SK (1999) New land surface digital elevation model covers the Earth. EOS Trans Am Geophys Union 80(6):69–70. https://doi.org/10.1029/99EO00050

    Article  Google Scholar 

  • Ghannam K, El-Fadel M (2013) Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmos Environ 69:156–169

    Google Scholar 

  • Gíslason SR, Stefánsdóttir G, Pfeffer MA, Barsotti S, Jóhannsson T, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller NS, Sigurdsson Á, Bergsson B, Galle B, Jacobo VC, Arellano S, Aiuppa A, Jónasdóttir EB, Eiríksdóttir ES, Jakobsson S, Guðfinnsson GH, Halldórsson SA, Gunnarsson H, Haddadi B, Jónsdóttir I, Thordarson T, Riishuus M, Högnadóttir T, Dürig T, Pedersen GBM, Höskuldsson Á, Gudmundsson MT (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Perspect Lett 1(0):84–93. https://doi.org/10.7185/geochemlet.1509

  • Granieri D, Salerno G, Liuzzo M, La Spina A, Giuffrida G, Caltabiano T, Giudice G, Gutierrez E, Montalvo F, Burton MR, Papale P (2015) Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador, Central America). Geophys Res Lett 42(14):5847–5854. https://doi.org/10.1002/2015GL064660

    Article  Google Scholar 

  • Graziani G, Martilli A, Pareschi M, Valenza M (1997) Atmospheric dispersion of natural gases at Vulcano island. J Volcanol Geotherm Res 75(3–4):283–308

    Google Scholar 

  • Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeigsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir T (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353(6296):aaf8988

    Google Scholar 

  • Harris AJ, Favalli M, Wright R, Garbeil H (2011) Hazard assessment at Mount Etna using a hybrid lava flow inundation model and satellite-based land classification. Nat Hazards 58(3):1001–1027

    Google Scholar 

  • Harris AJL, Villeneuve N, Di Muro A, Ferrazzini V, Peltier A, Coppola D, Favalli M, Bachèlery P, Froger J-L, Gurioli L, Moune S, Vlastélic I, Galle B, Arellano S (2017) Effusive crises at Piton de la Fournaise 2014–2015: a review of a multi-national response model. J Appl Volcanol 6(1):11. https://doi.org/10.1186/s13617-017-0062-9

    Article  Google Scholar 

  • Harris, A. J., Chevrel, M. O., Coppola, D., Ramsey, M., Hrysiewicz, A., Thivet, S., Villeneuve, N., Favalli, M., Peltier, A., & Kowalski, P. (2019). Validation of an integrated satellite-data-driven response to an effusive crisis: the April–May 2018 eruption of Piton de la Fournaise.

  • Haynes K, Barclay J, Pidgeon N (2007) Volcanic hazard communication using maps: an evaluation of their effectiveness. Bull Volcanol 70(2):123–138

    Google Scholar 

  • Heard IPC, Manning AJ, Haywood JM, Witham C, Redington A, Jones A, Clarisse L, Bourassa A (2012) A comparison of atmospheric dispersion model predictions with observations of SO2 and sulphate aerosol from volcanic eruptions. J Geophys Res-Atmos 117(D20). https://doi.org/10.1029/2011JD016791

  • Henderson SB, Burkholder B, Jackson PL, Brauer M, Ichoku C (2008) Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmos Environ 42(36):8524–8532

  • Herault A, Vicari A, Ciraudo A, Del Negro C (2009) Forecasting lava flow hazards during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci 35(5):1050–1060

    Google Scholar 

  • Holnicki P, Kałuszko A, Trapp W (2016) An urban scale application and validation of the CALPUFF model. Atmos Pollut Res 7(3):393–402

    Google Scholar 

  • Hossin M, Sulaiman M (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5(2):1

    Google Scholar 

  • Hyman DM, Bevilacqua A, Bursik M (2019) Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location. Natural Hazard and Earth System Sciences

  • Ilyinskaya E, Schmidt A, Mather TA, Pope FD, Witham C, Baxter P, Jóhannsson T, Pfeffer M, Barsotti S, Singh A (2017) Understanding the environmental impacts of large fissure eruptions: aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland). Earth Planet Sci Lett 472:309–322

    Google Scholar 

  • Jones A, Thomson D, Hort M, Devenish B (2007) The UK Met Office’s next-generation atmospheric dispersion model, NAME III. In: Air pollution modeling and its application XVII. Springer, pp 580–589

  • Langmann B (2000) Numerical modelling of regional scale transport and photochemistry directly together with meteorological processes. Atmos Environ 34(21):3585–3598

    Google Scholar 

  • Langmann B, Hort M, Hansteen T (2009) Meteorological influence on the seasonal and diurnal variability of the dispersion of volcanic emissions in Nicaragua: a numerical model study. J Volcanol Geotherm Res 182(1–2):34–44

    Google Scholar 

  • Levy JI, Spengler JD, Hlinka D, Sullivan D, Moon D (2002) Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications. Atmos Environ 36(6):1063–1075

    Google Scholar 

  • Lindsay JM, Robertson RE (2018) Integrating volcanic hazard data in a systematic approach to develop volcanic hazard maps in the Lesser Antilles. Front Earth Sci 6:42

    Google Scholar 

  • MacIntosh DL, Stewart JH, Myatt TA, Sabato JE, Flowers GC, Brown KW, Hlinka DJ, Sullivan DA (2010) Use of CALPUFF for exposure assessment in a near-field, complex terrain setting. Atmos Environ 44(2):262–270

    Google Scholar 

  • Marzocchi W, Bebbington MS (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74(8):1777–1805

    Google Scholar 

  • Marzocchi W, Neri A, Newhall C, Papale P (2007) Probabilistic volcanic hazard and risk assessment quantifying long-and short-term volcanic hazard: building up a common strategy for Italian volcanoes, Erice, Italy, 8 November 2006. EOS Trans Am Geophys Union 88(32):318–318

    Google Scholar 

  • Mead SR, Magill CR (2017) Probabilistic hazard modelling of rain-triggered lahars. J Appl Volcanol 6(1):8. https://doi.org/10.1186/s13617-017-0060-y

    Article  Google Scholar 

  • Neal C, Brantley S, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang J, Conway S, Desmither L (2019) The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363(6425):367–374

    Google Scholar 

  • Olafsdottir S, Gardarsson S, Andradottir H (2014) Spatial distribution of hydrogen sulfide from two geothermal power plants in complex terrain. Atmos Environ 82:60–70

    Google Scholar 

  • Osman S, Rossi E, Bonadonna C, Frischknecht C, Andronico D, Cioni R, Scollo S (2019) Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Nat Hazards Earth Syst Sci 19(3):589–610

    Google Scholar 

  • Pallister J, Papale P, Eichelberger J, Newhall C, Mandeville C, Nakada S, Marzocchi W, Loughlin S, Jolly G, Ewert J (2019) Volcano observatory best practices (VOBP) workshops-a summary of findings and best-practice recommendations. J Appl Volcanol 8(1):2

    Google Scholar 

  • Pareschi MT, Ranci M, Valenza M, Graziani G (1999) The assessment of volcanic gas hazard by means of numerical models: an example from Vulcano Island (Sicily). Geophys Res Lett 26(10):1405–1408. https://doi.org/10.1029/1999GL900248

    Article  Google Scholar 

  • Pedersen G, Höskuldsson A, Dürig T, Thordarson T, Jonsdottir I, Riishuus MS, Óskarsson BV, Dumont S, Magnússon E, Gudmundsson MT (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 340:155–169

    Google Scholar 

  • Pfeffer M, Bergsson B, Barsotti S, Stefánsdóttir G, Galle B, Arellano S, Conde V, Donovan A, Ilyinskaya E, Burton M (2018) Ground-based measurements of the 2014–2015 Holuhraun volcanic cloud (Iceland). Geosciences 8(1):29

    Google Scholar 

  • Pillai D, Gerbig C, Ahmadov R, Rödenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrič J (2011) High-resolution simulations of atmospheric CO2 over complex terrain–representing the Ochsenkopf mountain tall tower. Atmos Chem Phys 11(15):7445–7464

    Google Scholar 

  • Protonotariou A, Bossioli E, Athanasopoulou E, Dandou A, Tombrou M, Flocas H, Helmis C, Assimakopoulos V (2005) Evaluation of CALPUFF modelling system performance: an application over the Greater Athens Area, Greece. Int J Environ Pollut 24(1–4):22–35

    Google Scholar 

  • Ranzato L, Barausse A, Mantovani A, Pittarello A, Benzo M, Palmeri L (2012) A comparison of methods for the assessment of odor impacts on air quality: field inspection (VDI 3940) and the air dispersion model CALPUFF. Atmos Environ 61:570–579

    Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M. A., Schlese, U., & Schulzweida, U. (1996). The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate.

    Google Scholar 

  • Rögnvaldsson, Ó., Bao, J., Ágústsson, H., & Ólafsson, H. (2011). Downslope windstorm in Iceland–WRF/MM5 model comparison. Numerical Simulations of Surface Winds and Precipitation in Iceland.

  • Rowland SK, Garbeil H, Harris AJ (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai ‘i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67(7):634–647

    Google Scholar 

  • Rzeszutek M (2019) Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain-terrain data, grid resolution and terrain adjustment method. Sci Total Environ 689:31–46

    Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long-and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74(3):705–723

    Google Scholar 

  • Sandri L, Costa A, Selva J, Tonini R, Macedonio G, Folch A, Sulpizio R (2016) Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes. Sci Rep 6(1):24271. https://doi.org/10.1038/srep24271

    Article  Google Scholar 

  • Sasaki H, Seino N, Sato J, Chiba M (2002) Development of a dispersion model for volcanic gas over Miyake Island. J Meteor Soc Japan 80(5):1279–1288. https://doi.org/10.2151/jmsj.80.1279

    Article  Google Scholar 

  • Schmidt A, Leadbetter S, Theys N, Carboni E, Witham CS, Stevenson JA, Birch CE, Thordarson T, Turnock S, Barsotti S (2015) Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland). J Geophys Res-Atmos 120(18):9739–9757

    Google Scholar 

  • Scire JS, Strimaitis DG, Yamartino RJ (1990) Model formulation and user’s guide for the CALPUFF dispersion model. Sigma Research Corp, Concord

    Google Scholar 

  • Scire J. S., Robe, F. R., Fernau, M. E., & Yamartino, R. J. (2000a). A user’s guide for the CALMET Meteorological Model. Earth Tech, USA, 37.

  • Scire JS, Strimaitis DG, Yamartino RJ (2000b) A user’s guide for the CALPUFF dispersion model. Earth Tech, Inc, Concord, p 10

    Google Scholar 

  • Scollo S, Coltelli M, Bonadonna C, Del Carlo P (2013) Tephra hazard assessment at Mt. Etna (Italy). Nat Hazards Earth Syst Sci 13(12):3221–3233

    Google Scholar 

  • Seino N, Sasaki H, Sato J, Chiba M (2004) High-resolution simulation of volcanic sulfur dioxide dispersion over the Miyake Island. Atmos Environ 38(40):7073–7081

    Google Scholar 

  • Stefani M (2018) Factors influencing rain acidification from volcanic sulphur in Iceland. http://hdl.handle.net/1946/30435. Accessed 16 June 2020

  • Stefánsson A, Stefánsdóttir G, Keller NS, Barsotti S, Sigurdsson Á, Thorláksdóttir SB, Pfeffer MA, Eiríksdóttir ES, Jónasdóttir EB, von Löwis S (2017) Major impact of volcanic gases on the chemical composition of precipitation in Iceland during the 2014–2015 Holuhraun eruption. J Geophys Res-Atmos 122(3):1971–1982

    Google Scholar 

  • Tayanç M, Berçin A (2007) SO 2 modeling in İzmit Gulf, Turkey during the winter of 1997: 3 cases. Environ Model Assess 12(2):119–129

    Google Scholar 

  • Thompson MA, Lindsay JM, Gaillard J-C (2015) The influence of probabilistic volcanic hazard map properties on hazard communication. J Appl Volcanol 4(1):6

    Google Scholar 

  • Tian H, Qiu P, Cheng K, Gao J, Lu L, Liu K, Liu X (2013) Current status and future trends of SO2 and NOx pollution during the 12th FYP period in Guiyang city of China. Atmos Environ 69:273–280

    Google Scholar 

  • Timmreck C, Graf H-F, Feichter J (1999) Simulation of Mt. Pinatubo Volcanic aerosol with the Hamburg Climate Model ECHAM4. Theor Appl Climatol 62(3):85–108. https://doi.org/10.1007/s007040050076

    Article  Google Scholar 

  • Vicari A, Ganci G, Behncke B, Cappello A, Neri M, Del Negro C (2011) Near-real-time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption. Geophys Res Lett 38(13)

  • Yao R, Xu X, Xin C (2011) A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting. Atmos Environ 45(39):7525–7532

    Google Scholar 

  • Yim SH, Fung JC, Lau AK (2010) Use of high-resolution MM5/CALMET/CALPUFF system: SO2 apportionment to air quality in Hong Kong. Atmos Environ 44(38):4850–4858

    Google Scholar 

  • Zhou Y, Levy JI, Hammitt JK, Evans JS (2003) Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China. Atmos Environ 37(6):815–826

    Google Scholar 

Download references

Acknowledgments

Special thanks go to Ragnar H. Þrastarson, Bogi B. Björnsson and Bolli Pálmason for all graphical support. Sigþór G. Sigþórsson carried out exceptional work during the crisis, giving all of his time to implement the operational use of CALPUFF model at the IMO. The lead author is also grateful to Dr. Manuel Titos Luzon and Helga Ivarsdóttir for constructive discussion regarding confusion matrices, as well as Dr. PJ Baxter who supported this work by reading an earlier version and providing comments. The Executive Editor Dr. A. Harris, Dr. Sébastien Biasse, and an anonymous reviewer provided reviews that significantly improved this paper.

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Barsotti.

Additional information

Editorial responsibility: Y. Moussallam

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsotti, S. Probabilistic hazard maps for operational use: the case of SO2 air pollution during the Holuhraun eruption (Bárðarbunga, Iceland) in 2014–2015. Bull Volcanol 82, 56 (2020). https://doi.org/10.1007/s00445-020-01395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01395-3

Keywords

Navigation