Skip to main content
Log in

Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches

  • Review Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Menisci are fibrocartilaginous disks consisting of soft tissue with a complex biomechanical structure. They are critical determinants of the kinematics as well as the stability of the knee joint. Several studies have been carried out to formulate tissue mechanical behavior, leading to the development of a wide spectrum of constitutive laws. In addition to developing analytical tools, extensive numerical studies have been conducted on menisci modeling. This study reviews the developments of the most widely used continuum models of the meniscus mechanical properties in conjunction with emerging analytical and numerical models used to study the meniscus. The review presents relevant approaches and assumptions used to develop the models and includes discussions regarding strengths, weaknesses, and discrepancies involved in the presented models. The study presents a comprehensive coverage of relevant publications included in Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, Springer, and Scopus databases. This review aims at opening novel avenues for improving menisci modeling within the framework of constitutive modeling through highlighting the needs for further research directed toward determining key factors in gaining insight into the biomechanics of menisci which is crucial for the elaborate design of meniscal replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelgaied A et al (2015) Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J Biomech 48(8):1389–1396

    Google Scholar 

  • Abraham AC, Donahue TLH (2013) From meniscus to bone: a quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater 9(5):6322–6329

    Google Scholar 

  • Abraham AC et al (2011a) Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J Mech Behav Biomed Mater 4(8):2024–2030

    Google Scholar 

  • Abraham AC et al (2011b) Hyperelastic properties of human meniscal attachments. J Biomech 44(3):413–418

    MathSciNet  Google Scholar 

  • Alhalki MM, Howell SM, Hull ML (1999) How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. Am J Sports Med 27(3):320–328

    Google Scholar 

  • Anderson DR et al (1991) Viscoelastic shear properties of the equine medial meniscus. J Orthop Res 9(4):550–558

    Google Scholar 

  • Andrews S, Shrive N, Ronsky J (2011) The shocking truth about meniscus. J Biomech 44(16):2737–2740

    Google Scholar 

  • Andrews SH et al (2014) Tie-fibre structure and organization in the knee menisci. J Anat 224(5):531–537

    Google Scholar 

  • Aoyagi Y, Shephard RJ (2009) Steps per day. Sports Medicine 39(6):423–438

    Google Scholar 

  • Arnoczky SP et al (1988) The effect of cryopreservation on canine menisci: a biochemical, morphologic, and biomechanical evaluation. J Orthop Res 6(1):1–12

    Google Scholar 

  • Aspden R (1985) A model for the function and failure of the meniscus. Eng Med 14(3):119–122

    Google Scholar 

  • Athanasiou KA, Sanchez-Adams J (2009) Engineering the knee meniscus. Synth Lect Tissue Eng 1(1):1–97

    Google Scholar 

  • Baro VJ et al (2012) Functional characterization of normal and degraded bovine meniscus: rate-dependent indentation and friction studies. Bone 51(2):232–240

    Google Scholar 

  • Beidokhti HN et al (2016) A comparison between dynamic implicit and explicit finite element simulations of the native knee joint. Med Eng Phys 38(10):1123–1130

    Google Scholar 

  • Beillas P et al (2004) A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech 37(7):1019–1030

    Google Scholar 

  • Bendjaballah MZ, Shirazi-Adl A, Zukor D (1995) Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2(2):69–79

    Google Scholar 

  • Bendjaballah M, Shirazi-Adl A, Zukor D (1997) Finite element analysis of human knee joint in varus-valgus. Clin Biomech 12(3):139–148

    Google Scholar 

  • Berlet GC, Fowler PJ (1998) The anterior horn of the medial meniscus. Am J Sports Med 26(4):540–543

    Google Scholar 

  • Bullough PG et al (1970) The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg 52(3):564–570

    Google Scholar 

  • Bursac P, Arnoczky S, York A (2009) Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology 46(3):227–237

    Google Scholar 

  • Bylski-Austrow DI et al (1994) Displacements of the menisci under joint load: an in vitro study in human knees. J Biomech 27(4):421–423

    Google Scholar 

  • Chambers MC, El-Amin SF (2015) Tissue engineering of the meniscus: scaffolds for meniscus repair and replacement. Musculoskelet Regener 1:24

    Google Scholar 

  • Chia HN, Hull M (2008) Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J Orthop Res 26(7):951–956

    Google Scholar 

  • Coluccino L et al (2017) Anisotropy in the viscoelastic response of knee meniscus cartilage. J Appl Biomater Funct Mater 15(1):77–83

    Google Scholar 

  • Dabiri Y, Li L (2013) Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee. Med Eng Phys 35(11):1591–1598

    Google Scholar 

  • Danso E et al (2014) Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus. J Biomech 47(1):200–206

    Google Scholar 

  • Danso E et al (2015) Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on mechanical nonlinearities. J Biomech 48(8):1499–1507

    Google Scholar 

  • Danso EK et al (2017) Structure-function relationships of human meniscus. J Mech Behav Biomed Mater 67:51–60

    Google Scholar 

  • Danso E, Julkunen P, Korhonen R (2018) Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J Biomech 77:233–237

    Google Scholar 

  • Dhaher YY, Kwon T-H, Barry M (2010) The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech 43(16):3118–3125

    Google Scholar 

  • Donahue TLH et al (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124(3):273–280

    Google Scholar 

  • Donahue TLH et al (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36(1):19–34

    Google Scholar 

  • Donahue TLH et al (2004) The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res 22(4):807–814

    Google Scholar 

  • Favenesi J, Shaffer J, Mow V (1983) Biphasic mechanical properties of knee meniscus. Trans Orthop Res Soc 8:57

    Google Scholar 

  • Fischenich KM et al (2014) Evaluation of meniscal mechanics and proteoglycan content in a modified anterior cruciate ligament transection model. J Biomech Eng 136(7):071001

    Google Scholar 

  • Fischenich KM et al (2015) Effects of degeneration on the compressive and tensile properties of human meniscus. J Biomech 48(8):1407–1411

    Google Scholar 

  • Fithian DC, Kelly MA, Mow VC (1990) Material properties and structure-function relationships in the menisci. Clin Orthop Relat Res 252:19–31

    Google Scholar 

  • Freutel M et al (2015a) Material properties of individual menisci and their attachments obtained through inverse FE-analysis. J Biomech 48(8):1343–1349

    Google Scholar 

  • Freutel M et al (2015b) Mechanical properties and morphological analysis of the transitional zone between meniscal body and ligamentous meniscal attachments. J Biomech 48(8):1350–1355

    Google Scholar 

  • Freutel M et al (2015c) Influence of partial meniscectomy on attachment forces, superficial strain and contact mechanics in porcine knee joints. Knee Surg Sports Traumatol Arthrosc 23(1):74–82

    Google Scholar 

  • Gabrion A et al (2005) Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surg Radiol Anat 27(6):507–510

    Google Scholar 

  • Gaugler M et al (2015) Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage. Knee Surg Sports Traumatol Arthrosc 23(4):1141–1146

    Google Scholar 

  • Goertzen D, Gillquist J, Messner K (1996) Tensile strength of the tibial meniscal attachments in the rabbit. J Biomed Mater Res 30(1):125–128

    Google Scholar 

  • Goertzen D, Budney D, Cinats J (1997) Methodology and apparatus to determine material properties of the knee joint meniscus. Med Eng Phys 19(5):412–419

    Google Scholar 

  • Gu K, Li L (2011) A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Med Eng Phys 33(4):497–503

    Google Scholar 

  • Haemer JM, Carter DR, Giori NJ (2012) The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip. J Biomech 45(8):1450–1456

    Google Scholar 

  • Halonen K et al (2014) Deformation of articular cartilage during static loading of a knee joint–experimental and finite element analysis. J Biomech 47(10):2467–2474

    Google Scholar 

  • Halonen K et al (2016) Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J Biomech 49(13):2566–2576

    Google Scholar 

  • Halonen K et al (2017) Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage-combined musculoskeletal modelling and finite element analysis. Sci Rep 7(1):17396

    Google Scholar 

  • Hauch K et al (2009) Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater 2(4):339–347

    Google Scholar 

  • Hauch KN, Villegas DF, Donahue TLH (2010) Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 43(3):463–468

    Google Scholar 

  • Holmes M, Mow VC (1990) The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23(11):1145–1156

    Google Scholar 

  • Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1–3):1–48

    MathSciNet  MATH  Google Scholar 

  • Hsieh H-H, Walker P (1976) Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Jt Surg 58(1):87–93

    Google Scholar 

  • Jilani A, Shirazi-Adl A, Bendjaballah M (1997) Biomechanics of human tibio-femoral joint in axial rotation. Knee 4(4):203–213

    Google Scholar 

  • Joshi MD et al (1995) Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res 29(7):823–828

    Google Scholar 

  • Kahlon A, Hurtig M, Gordon K (2015) Regional and depth variability of porcine meniscal mechanical properties through biaxial testing. J Mech Behav Biomed Mater 41:108–114

    Google Scholar 

  • Kazemi M, Li L (2014) A viscoelastic poromechanical model of the knee joint in large compression. Med Eng Phys 36(8):998–1006

    Google Scholar 

  • Kazemi M et al (2011) Creep behavior of the intact and meniscectomy knee joints. J Mech Behav Biomed Mater 4(7):1351–1358

    Google Scholar 

  • Kazemi M et al (2012) Partial meniscectomy changes fluid pressurization in articular cartilage in human knees. J Biomech Eng 134(2):021001

    Google Scholar 

  • Kazemi M, Dabiri Y, Li LP (2013) Recent advances in computational mechanics of the human knee joint. Comput Math Methods Med 2013:718423

    MathSciNet  Google Scholar 

  • Khoshgoftar M et al (2015) The sensitivity of cartilage contact pressures in the knee joint to the size and shape of an anatomically shaped meniscal implant. J Biomech 48(8):1427–1435

    Google Scholar 

  • Klets O et al (2016) Comparison of different material models of articular cartilage in 3D computational modeling of the knee: data from the Osteoarthritis Initiative (OAI). J Biomech 49(16):3891–3900

    Google Scholar 

  • Kobayashi M, Chang Y-S, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26(16):3243–3248

    Google Scholar 

  • Kohn D, Moreno B (1995) Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthrosc J Arthrosc Relat Surg 11(1):96–103

    Google Scholar 

  • Krause WR et al (1976) Mechanical changes in the knee after meniscectomy. J Bone Joint Surg 58(5):599–604

    Google Scholar 

  • Kurosawa H, Fukubayashi T, Nakajima H (1980) Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 149:283–290

    Google Scholar 

  • Lai JH, Levenston ME (2010) Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression. Osteoarthr Cartil 18(10):1291–1299

    Google Scholar 

  • Lakes EH et al (2015) Comparing the mechanical properties of the porcine knee meniscus when hydrated in saline versus synovial fluid. J Biomech 48(16):4333–4338

    Google Scholar 

  • LaPrade RF et al (2017) The menisci: a comprehensive review of their anatomy, biomechanical function and surgical treatment. Springer, Berlin

    Google Scholar 

  • Lechner K, Hull M, Howell S (2000) Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J Orthop Res 18(6):945–951

    Google Scholar 

  • LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124(3):315–321

    Google Scholar 

  • Leslie B et al (1998) Radial fibre proportions in human knee joint menisci. Cells Tissues Organs 163(4):212–217

    Google Scholar 

  • Leslie B et al (2000) Anisotropic response of the human knee joint meniscus to unconfined compression. Proc Inst Mech Eng 214(6):631–635

    MathSciNet  Google Scholar 

  • Levillain A et al (2017) Viscoelastic properties of rabbit osteoarthritic menisci: a correlation with matrix alterations. J Mech Behav Biomed Mater 65:1–10

    Google Scholar 

  • Li G et al (1999) A validated three-dimensional computational model of a human knee joint. J Biomech Eng 121(6):657–662

    Google Scholar 

  • Li Q et al (2015) Biomechanical properties of murine meniscus surface via AFM-based nanoindentation. J Biomech 48(8):1364–1370

    Google Scholar 

  • Li Q et al (2017) Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomater 54:356–366

    Google Scholar 

  • Li L et al (2019) Three-dimensional finite-element analysis of aggravating medial meniscus tears on knee osteoarthritis. J Orthop Transl 20:47

    Google Scholar 

  • Limbert G, Taylor M (2002) On the constitutive modeling of biological soft connective tissues: a general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain. Int J Solids Struct 39(8):2343–2358

    MATH  Google Scholar 

  • Łuczkiewicz P et al (2015) Influence of meniscus shape in the cross sectional plane on the knee contact mechanics. J Biomech 48(8):1356–1363

    Google Scholar 

  • Maes JA, Donahue TH (2006) Time dependent properties of bovine meniscal attachments: stress relaxation and creep. J Biomech 39(16):3055–3061

    Google Scholar 

  • Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32(30):7411–7431

    Google Scholar 

  • Masouros S et al (2008) Biomechanics of the meniscus-meniscal ligament construct of the knee. Knee Surg Sports Traumatol Arthrosc 16(12):1121–1132

    Google Scholar 

  • Meakin JR et al (2003) Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour. Knee 10(1):33–41

    Google Scholar 

  • Mihai LA, Goriely A (2017) How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc R Soc A Math Phys Eng Sci 473(2207):20170607

    MathSciNet  MATH  Google Scholar 

  • Moglo K, Shirazi-Adl A (2003) Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee 10(3):265–276

    Google Scholar 

  • Mononen M et al (2011) Alterations in structure and properties of collagen network of osteoarthritic and repaired cartilage modify knee joint stresses. Biomech Model Mechanobiol 10(3):357–369

    Google Scholar 

  • Mow VC, Huiskes R (2005) Basic orthopaedic biomechanics & mechano-biology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394

    Google Scholar 

  • Moyer JT, Abraham AC, Donahue TLH (2012) Nanoindentation of human meniscal surfaces. J Biomech 45(13):2230–2235

    Google Scholar 

  • Moyer JT et al (2013) Indentation properties and glycosaminoglycan content of human menisci in the deep zone. Acta Biomater 9(5):6624–6629

    Google Scholar 

  • Murphy CA et al (2018) Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: state of the art and future trends. Appl Mater Today 12:51–71

    Google Scholar 

  • Murphy CA et al (2019) Regional dependency of bovine meniscus biomechanics on the internal structure and glycosaminoglycan content. J Mech Behav Biomed Mater 94:186–192

    Google Scholar 

  • Newman AP et al (1989) Mechanics of the healed meniscus in a canine model. Am J Sports Med 17(2):164–175

    Google Scholar 

  • Nguyen AM, Levenston ME (2012) Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear. J Orthop Res 30(1):95–102

    Google Scholar 

  • Nolan D et al (2014) A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J Mech Behav Biomed Mater 39:48–60

    Google Scholar 

  • Orozco GA et al (2018) The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics. Sci Rep 8(1):2323

    Google Scholar 

  • Paul J (1976) Approaches to design-Force actions transmitted by joints in the human body. Proc R Soc Lond B 192(1107):163–172

    Google Scholar 

  • Peloquin JM, Santare MH, Elliott DM (2016) Advances in quantification of meniscus tensile mechanics including nonlinearity, yield, and failure. J Biomech Eng 138(2):021002

    Google Scholar 

  • Pena E et al (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20(5):498–507

    Google Scholar 

  • Pena E et al (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39(9):1686–1701

    Google Scholar 

  • Peña E et al (2008) Computer simulation of damage on distal femoral articular cartilage after meniscectomies. Comput Biol Med 38(1):69–81

    Google Scholar 

  • Pereira H et al (2014) Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthrit Cartil 22(9):1271–1281

    Google Scholar 

  • Perie D, Hobatho M (1998) In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin Biomech 13(6):394–402

    Google Scholar 

  • Petersen W, Tillmann B (1998) Collagenous fibril texture of the human knee joint menisci. Anat Embryol 197(4):317–324

    Google Scholar 

  • Proctor C et al (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7(6):771–782

    Google Scholar 

  • Quiroga JP et al (2014) Should a native depth-dependent distribution of human meniscus constitutive components be considered in FEA-models of the knee joint? J Mech Behav Biomed Mater 38:242–250

    Google Scholar 

  • Sanchez-Adams J, Wilusz RE, Guilak F (2013) Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res 31(8):1218–1225

    Google Scholar 

  • Sandmann GH et al (2013) Biomechanical comparison of menisci from different species and artificial constructs. BMC Musculoskelet Disord 14(1):324

    Google Scholar 

  • Sauren A, Huson A, Schouten R (1984) An axisymmetric finite element analysis of the mechanical function of the meniscus. Int J Sports Med 5(S1):S93–S95

    Google Scholar 

  • Seedhom B (1979) Transmission of the load in the knee joint with special reference to the role of the menisci: Part I: anatomy, analysis and apparatus. Engineering in Medicine 8(4):207–219

    Google Scholar 

  • Seitz AM et al (2013) Stress-relaxation response of human menisci under confined compression conditions. J Mech Behav Biomed Mater 26:68–80

    Google Scholar 

  • Setton LA et al (1999) Biomechanical factors in tissue engineered meniscal repair. Clin Orthop Relat Res 367:254–272

    Google Scholar 

  • Seyfi B, Fatouraee N, Imeni M (2018) Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method. J Mech Behav Biomed Mater 77:337–346

    Google Scholar 

  • Shemesh M et al (2014) Viscoelastic properties of a synthetic meniscus implant. J Mech Behav Biomed Mater 29:42–55

    Google Scholar 

  • Shriram D et al (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7(1):6011

    Google Scholar 

  • Skaggs D, Warden W, Mow V (1994) Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 12(2):176–185

    Google Scholar 

  • Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25(9):1027–1045

    Google Scholar 

  • Stärke C et al (2010) The effect of a nonanatomic repair of the meniscal horn attachment on meniscal tension: a biomechanical study. Arthrosc J Arthrosc Relat Surg 26(3):358–365

    Google Scholar 

  • Sweigart MA, Athanasiou KA (2001) Toward tissue engineering of the knee meniscus. Tissue Eng 7(2):111–129

    Google Scholar 

  • Sweigart M, Athanasiou K (2005) Tensile and compressive properties of the medial rabbit meniscus. Proc Inst Mech Eng 219(5):337–347

    Google Scholar 

  • Sweigart M et al (2004) Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 32(11):1569–1579

    Google Scholar 

  • Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28(4):411–422

    Google Scholar 

  • Upton ML et al (2006) Finite element modeling predictions of region-specific cell-matrix mechanics in the meniscus. Biomech Model Mechanobiol 5(2–3):140

    Google Scholar 

  • Vadher SP et al (2006) Finite element modeling following partial meniscectomy: effect of various size of resection. In: 28th annual international conference of the IEEE. Engineering in Medicine and Biology Society, 2006. EMBS’06.. IEEE

  • Vaziri A et al (2008) Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Ann Biomed Eng 36(8):1335–1344

    Google Scholar 

  • Venäläinen MS et al (2014) Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint—a two-dimensional finite element study. J Biomech Eng 136(12):121005

    Google Scholar 

  • Villegas DF et al (2007) Failure properties and strain distribution analysis of meniscal attachments. J Biomech 40(12):2655–2662

    Google Scholar 

  • Villegas DF et al (2008) A quantitative study of the microstructure and biochemistry of the medial meniscal horn attachments. Ann Biomed Eng 36(1):123–131

    Google Scholar 

  • Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5(2):157–161

    Google Scholar 

  • Vrancken A et al (2015) Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model. PloS One 10(7):0133138

    Google Scholar 

  • Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192

    Google Scholar 

  • Wang L et al (2013) Theoretical prediction of ultrasound elastography for detection of early osteoarthritis. Sci World J 2013:565717

    Google Scholar 

  • Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1–2):107–128

    MATH  Google Scholar 

  • Wheatley BB et al (2015) An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading. J Biomech 48(8):1454–1460

    Google Scholar 

  • Wilson W et al (2003) Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J Biomech 36(6):845–851

    Google Scholar 

  • Yang N, Nayeb-Hashemi H, Canavan PK (2009) The combined effect of frontal plane tibiofemoral knee angle and meniscectomy on the cartilage contact stresses and strains. Ann Biomed Eng 37(11):2360–2372

    Google Scholar 

  • Yang NH, Canavan PK, Nayeb-Hashemi H (2010) The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage. J Appl Biomech 26(4):432–443

    Google Scholar 

  • Yao J et al (2006a) Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng 128(3):399–408

    Google Scholar 

  • Yao J et al (2006b) Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J Biomech Eng 128(1):135–141

    Google Scholar 

  • Yasura K et al (2007) Estimation of the mechanical property of meniscus using ultrasound: examinations of native meniscus and effects of enzymatic digestion. J Orthop Res 25(7):884–893

    Google Scholar 

  • Zhu W, Chern KY, Mow VC (1994) Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res 306:34–45

    Google Scholar 

  • Zielinska B, Donahue TLH (2006) 3D finite element model of meniscectomy: changes in joint contact behavior. J Biomech Eng 128(1):115–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Seyfi.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imeni, M., Seyfi, B., Fatouraee, N. et al. Constitutive modeling of menisci tissue: a critical review of analytical and numerical approaches. Biomech Model Mechanobiol 19, 1979–1996 (2020). https://doi.org/10.1007/s10237-020-01352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01352-1

Keywords

Navigation