Skip to main content
Log in

On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper we develop fundamental theories for a scalar first-order hyperbolic partial differential equation with two internal variables which models single-species population dynamics with two physiological structures such as age–age, age–maturation, age–size, and age–stage. Classical techniques of treating structured models with a single internal variable are generalized to study the double physiologically structured model. First, the semigroup is defined based on the solutions and its infinitesimal generator is determined. Then, the compactness of solution trajectories is established. Finally, spectrum theory is employed to investigate stability of the zero steady state and asynchronous exponential growth of solutions is studied when the zero steady state is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Springer, New York (2000)

    MATH  Google Scholar 

  2. Bacaër, N., Ait Dads, E.H.: Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Barfield, M., Holt, R.D., Gomulkiewicz, R.: Evolution in stage-structured populations. Am. Nat. 177, 397–409 (2011)

    Google Scholar 

  4. Brikci, F.B., Clairambault, J., Ribba, B., Perthame, B.: An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57, 91–110 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bernard, S., Pujo-Menjouet, L., Mackey, M.C.: Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J. 84(5), 3414–3424 (2003)

    Google Scholar 

  6. Burie, J.-B., Ducrot, A., Mbengue, A.A.: Asymptotic behavior of an age and infection age structured model for the propagation of fungal diseases in plants. Discrete Contin. Dynam. Syst. Ser. B 22(7), 2879–2905 (2017)

    MATH  Google Scholar 

  7. Cushing, J.M.: An introduction to structured population dynamics. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71. SIAM, Philadelphia, PA (1998)

  8. Daners, D., Koch-Medina, P.: Abstract Evolution Equations, Periodic Problems and Applications. Longman Scientific & Technical, Harlow (1992)

    MATH  Google Scholar 

  9. Degla, G.: An overview of semi-continuity results on the spectral radius and positivity. J. Math. Anal. Appl. 338, 101–110 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Delgado, M., Molina-Becerra, M., Suárez, A.: Nonlinear age-dependent diffusive equations: a bifurcation approach. J. Differ. Equ. 244, 2133–2155 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. In: Favini, A., Obrecht, E. (eds.) Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 1223, pp. 61–73. Springer, Berlin (1986)

    Google Scholar 

  12. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Doumic, M.: Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2(3), 121–152 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Dunford, N., Schwartz, J.: Linear Operators. Part I: General Theory. Interscience, New York (1958)

    MATH  Google Scholar 

  15. Dyson, J., Villella-Bressan, R., Webb, G.: A nonlinear age and maturity structured model of population dynamics: I. Basic theory. J. Math. Anal. Appl. 242(1), 93–104 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Dyson, J., Villella-Bressan, R., Webb, G.: A nonlinear age and maturity structured model of population dynamics: II. Chaos. J. Math. Anal. Appl. 242(2), 255–270 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Ebenman, B., Persson, L.: Size-Structured Populations: Ecology and Evolution. Springer, Berlin (1988)

    MATH  Google Scholar 

  18. Engel, K.-J., Nagel, R.: A Short Course on Operator Semigroups. Springer, New York (2006)

    MATH  Google Scholar 

  19. Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M.: Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101, 6146–6151 (2004)

    Google Scholar 

  20. Heijmans, H.J.A.M.: The dynamical behaviour of the age-size-distribution of a cell population. In: Metz, J.A.J., Diekmann, O. (eds.) The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68, pp. 185–202. Springer, Berlin (1986)

    Google Scholar 

  21. Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  22. Hoppensteadt, F.: An age dependent epidemic model. J. Frankl. Inst. 297, 325–333 (1974)

    MATH  Google Scholar 

  23. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Giardini editori e stampatori, Pisa (1995)

    Google Scholar 

  24. Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infection. Math. Biosci. 201(1–2), 15–47 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Inaba, H.: Endemic threshold analysis for the Kermack–McKendrick reinfection model. Josai Math. Monogr. 9, 105–133 (2016)

    Google Scholar 

  26. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, New York (2017)

    MATH  Google Scholar 

  27. Kang, H., Huo, X., Ruan, S.: Nonlinear physiologically-structured population models with two internal variables. J. Nonlinear Sci. (in press)

  28. Kapitanov, G.: A mathematical model of cancer stem cell lineage population dynamics with mutation accumulation and telomere length hierarchies. Math. Model. Nat. Phenom. 7(1), 136–165 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Kapitanov, G.: A double age-structured model of the co-infection of tuberculosis and HIV. Math. Biosci. Eng. 12, 23–40 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Kato, T.: Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math. Z. 180(3), 265–273 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (2013)

    Google Scholar 

  32. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  33. Laroche, B., Perasso, A.: Threshold behaviour of a SI epidemiological model with two structuring variables. J. Evol. Equ. 16, 293–315 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Magal, P., Ruan, S.: Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936. Springer, Berlin (2008)

    MATH  Google Scholar 

  35. Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems. Springer, New York (2018)

    MATH  Google Scholar 

  36. Manly, F.J.: Stage-Structured Populations: Sampling, Analysis and Simulation. Springer, Dordrecht (1990)

    Google Scholar 

  37. Marek, I.: Frobenius theory of positive operators: comparison theorems and applications. SIAM J. Appl. Math. 19(3), 607–628 (1970)

    MathSciNet  MATH  Google Scholar 

  38. Matucci, S.: Existence, uniqueness and asymptotic behavior for a multi-stage evolution problem. Math. Models Methods Appl. Sci. 8, 1013–1041 (1995)

    MATH  Google Scholar 

  39. McNair, J.N., Goulden, C.E.: The dynamics of age-structured population with a gestation period: density-independent growth and egg ratio methods for estimating the birth-rate. Theor. Popul. Biol. 39, 1–29 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 86. Springer, Berlin (1986)

    MATH  Google Scholar 

  41. Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J. 37(3), 473–478 (1970)

    MathSciNet  MATH  Google Scholar 

  42. Nussbaum, R.D.: Periodic solutions of some nonlinear integral equations. In: Bednarek, A.R., Cesari, L. (eds.) Dynamical Systems, pp. 221–249. Academic Press, New York (1977)

    Google Scholar 

  43. Sawashima, I.: On spectral properties of some positive operators. Nat. Sci. Rep. Ochanomizu Univ. 15(2), 53–64 (1964)

    MathSciNet  MATH  Google Scholar 

  44. Sinko, J.W., Streifer, W.: A new model for age-size structure of a population. Ecology 48, 910–918 (1967)

    Google Scholar 

  45. Stadler, E.: Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids. J. Math. Biol. 78(5), 1299–1330 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integr. Equ. 3(6), 1035–1066 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Thieme, H.: Remarks on resolvent positive operators and their perturbation. Discrete Contin. Dyn. Syst. 4(1), 73–90 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Walker, C.: Bifurcations of positive equilibria in nonlinear structured population models with varying mortality rates. Ann. Mat. Pura Appl. 190, 1–19 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Walker, C.: Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh. Math. 170, 481–501 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Webb, G.F.: Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces. Proc. R. Soc. Edinb. Sect. A Math. 84(1–2), 19–33 (1979)

    MathSciNet  MATH  Google Scholar 

  51. Webb, G.F.: Nonlinear semigroups and age-dependent population models. Ann. Mat. Pura Appl. 129, 43–55 (1981)

    MathSciNet  MATH  Google Scholar 

  52. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1984)

    Google Scholar 

  53. Webb, G.F.: Dynamics of populations structured by internal variables. Math. Z. 189, 319–335 (1985)

    MathSciNet  MATH  Google Scholar 

  54. Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math. Soc. 303(2), 751–763 (1987)

    MathSciNet  MATH  Google Scholar 

  55. Webb, G.F.: Population models structured by age, size, and spatial position. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936, pp. 1–49. Springer, Berlin (2008)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Hisashi Inaba for very helpful discussions and in particular for bring the reference Webb [53] into our attention. We are also very grateful to the anonymous reviewer for his/her helpful comments and constructive suggestions which helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported by National Science Foundation (DMS-1853622).

Appendix

Appendix

In this Appendix, we prove some statements that were used in Sect. 4.

Proposition A.1

If \(a^+=\infty\), \({\underline{\mu }}>0\), and Assumption 2.1holds, then \(S_1(t)\) satisfies the hypothesis (ii) and \(S_2(t), S_3(t)\) satisfy the hypothesis (iii) of Proposition 4.2.

Proof

We only need to show that \(S_2(t)\) is compact for \(t>0\), which is equivalent to show that for a bounded set K of E,

$$\begin{aligned}&\lim_{h\rightarrow 0, \, k\rightarrow 0} \int _{0}^{\infty } \int _{0}^{\infty }\big |S_2(t)\phi (a+h, a'+k)-S_2(t)\phi (a,a')\big |{\mathrm{d}}a{\mathrm{d}}a'=0 \end{aligned}$$
(A.1)
$$\begin{aligned} &\lim _{ h\rightarrow \infty, k\rightarrow \infty}\int _{h}^{\infty } \int _{k}^{\infty }\big |S_2(t)\phi (a,a')\big |{\mathrm{d}}a{\mathrm{d}}a'=0 \end{aligned}$$
(A.2)

uniformly for \(\phi \in K\) (which can be found in [14, Theorem 21, p. 301]). Without loss of generality, assume \(k>h\) and \(h,k\rightarrow 0^+\), we have

$$\begin{aligned}&\int _{0}^{\infty } \int _{0}^{\infty }\big |S_2(t)\phi (a+h, a'+k)-S_2(t)\phi (a,a')\big |{\mathrm{d}}a'{\mathrm{d}}a\nonumber \\&\quad \le \underbrace{\int _{0}^{t-h} \int _{a}^{\infty }\big |S_2(t)\phi (a+h, a'+k)-S_2(t)\phi (a,a')\big |{\mathrm{d}}a'{\mathrm{d}}a}_{{{\text {region I}}}}\nonumber \\&\qquad +\underbrace{\int _{k-h}^{t-h} \int _{a+h-k}^{a}\big |S_2(t)\phi (a+h,a'+k)\big |{\mathrm{d}}a'{\mathrm{d}}a}_{{{\text {region II}}}}\nonumber \\&\qquad + \underbrace{\int _0^{k-h} \int _0^{a}\big |S_2(t)\phi (a+h,a'+k)\big | {\mathrm{d}}a'{\mathrm{d}}a}_{{{\text {region III}}}}+\underbrace{\int _{t-h}^{t} \int _a^{\infty }\big |S_2(t)\phi (a,a')\big | {\mathrm{d}}a'{\mathrm{d}}a}_{{{\text {region IV}}}}, \end{aligned}$$
(A.3)

as illustrated in Fig. 3b: \(S_2(t)\phi (a, a')\) is non-trivial for points \((a,a')\) in regions I and IV, and \(S_2(t)\phi (a+h, a'+k)\) is non-trivial for points \((a,a')\) in regions I, II, and III.

We first show

$$\begin{aligned}&\int _{0}^{t-h} \int _{a}^{\infty }\big |S_2(t)\phi (a+h, a'+k)-S_2(t)\phi (a,a')\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{0}^{t} \int _{a}^{\infty }\big |b_\phi (t-a-h, a'+k-a-h)-b_\phi (t-a, a'-a)\big |e^{-\int _{0}^{a+h}\mu (s, s+a'+k-a-h){\mathrm{d}}s}{\mathrm{d}}a'{\mathrm{d}}a\\&\qquad +\int _{0}^{t-h} \int _{a}^{\infty }\big |b_\phi (t-a, a'-a)[e^{-\int _{0}^{a+h}\mu (s, s+a'+k-a-h){\mathrm{d}}s}-e^{-\int _{0}^{a}\mu (s, s+a'-a){\mathrm{d}}s}]\big |{\mathrm{d}}a'{\mathrm{d}}a \\&\quad :={\mathrm{I}}+{\mathrm{II}}, \end{aligned}$$

where

$$\begin{aligned} {\mathrm{II}}&\le \int _{0}^{t-h}\int _{a}^{\infty }b_\phi (t-a, a'-a)\big |e^{-\int _0^{a+h}\mu (s, s+a'-a){\mathrm{d}}s}[1-e^{\int _0^{a+h}\mu (s, s+a'-a)-\mu (s, s+a'+k-a-h){\mathrm{d}}s}]\\&\quad +e^{-\int _0^{a}\mu (s, s+a'-a){\mathrm{d}}s}[1-e^{-\int _{a}^{a+h}\mu (s, s+a'-a){\mathrm{d}}s}]\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\le \int _{0}^{t-h}\int _{a}^{\infty }b_\phi (t-a, a'-a)\big (\max \{1-e^{-K_{\mu }(k-h)t},e^{K_{\mu }(k-h)t}-1\}+(1-e^{-{\bar{\mu }}h})\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\le \big (\max \{1-e^{-K_{\mu }(k-h)t},e^{K_{\mu }(k-h)t}-1\}+(1-e^{-{\bar{\mu }}h})\big )\int _{0}^{t}\int _{0}^{\infty }b_\phi (t-a, s){\mathrm{d}}s{\mathrm{d}}a\\&\le 2\beta _{\max }\Vert \phi \Vert _E \big (\max \{1-e^{-K_{\mu }(k-h)t},e^{K_{\mu }(k-h)t}-1\}+(1-e^{-{\bar{\mu }}h})\big ) \int _{0}^{t}e^{4\beta _{\max }(t-a)}{\mathrm{d}}a \end{aligned}$$

based on our prior estimate in Sect. 2.1 and with \(K_{\mu }\) being the Lipschitz constant for \(\mu\), thus \({\mathrm{II}}\rightarrow 0\) uniformly for \(\phi \in K\) as \(h,k\rightarrow 0^+\). Next, we need to show that

$$\begin{aligned} \lim_{h\rightarrow 0, \, k\rightarrow 0} \int _{0}^{t}\int _{a}^{\infty }|b_\phi (t-a-h, a'+k-a-h)-b_\phi (t-a, a'-a)|{\mathrm{d}}a'{\mathrm{d}}a=0. \end{aligned}$$
(A.4)

Now by an alternative version of (2.7) and (2.8), we have

$$\begin{aligned}&\int _{0}^{t}\int _{a}^{\infty }|b_\phi (t-a-h, a'+k-a-h)-b_\phi (t-a, a'-a)|{\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{0}^{t}\int _{a}^{\infty }\big |\int _{0}^{t-a-h}\int _{0}^{\infty }f_1(a'+k-a-h, t-a-h-p, s+t-a-h-p)b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\\&\qquad -\int _{0}^{t-a}\int _{0}^{\infty }f_1(a'-a, t-a-p, s+t-a-p)b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\qquad +\int _{0}^{t}\int _{a}^{\infty }\big |\int _{0}^{t-a-h}\int _{0}^{\infty }g_1(a'+k-a-h, p+t-a-h-s, t-a-h-s)b'_\phi (s, p){\mathrm{d}}p{\mathrm{d}}s\\&\qquad -\int _{0}^{t-a}\int _{0}^{\infty }g_1(a'-a, p+t-a-s, t-a-s)b'_\phi (s, p){\mathrm{d}}p{\mathrm{d}}s\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\qquad +\int _{0}^{t}\int _{a}^{\infty }\big |\int _{0}^{\infty }\int _{0}^{\infty }h_1(a'+k-a-h, p, s, t-a-h)\phi (p, s){\mathrm{d}}p{\mathrm{d}}s\\&\qquad -\int _{0}^{\infty }\int _{0}^{\infty }h_1(a'-a, p, s, t-a)\phi (p, s){\mathrm{d}}p{\mathrm{d}}s\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\quad := {\mathrm{J}}_1+{\mathrm{J}}_2+{\mathrm{J}}_3, \end{aligned}$$

where

$$\begin{aligned} {\mathrm{J}_1}&\le \int _{0}^{t} \int _{a}^{\infty } \big (\int _{0}^{t-a-h}\int _{0}^{\infty }|f_1(a'+k-a-h, t-a-h-p, s+t-a-h-p)\\&\quad -f_1(a'-a, t-a-p, s+t-a-p)|b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\\&\quad +\int _{t-a}^{t-a-h}\int _{0}^{\infty }f_1(a'-a, t-a-p, s+t-a-p)b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&:={\mathrm{J}}_1^1+{\mathrm{J}}_1^2, \end{aligned}$$

in which

$$\begin{aligned}&|f_1(a'+k-a-h, t-a-h-p, s+t-a-h-p)-f_1(a'-a, t-a-p, s+t-a-p)|\\&\quad \le \beta _1(a'+k-a-h)\big |\beta _2(t-a-h-p, s+t-a-h-p)e^{-\int _{0}^{t-a-p-h}\mu (\sigma ,\sigma +s){\mathrm{d}}\sigma }\\&\qquad -\beta _2(t-a-p, s+t-a-p)e^{-\int _{0}^{t-a-p}\mu (\sigma ,\sigma +s){\mathrm{d}}\sigma }\big |\\&\qquad +|\beta _1(a'+k-a-h)-\beta _1(a'-a)|\beta _2(t-a-p, s+t-a-p)\\&\quad \le \beta _1(a'+k-a-h)\big |\beta _2(t-a-h-p, s+t-a-h-p)-\beta _2(t-a-p, s+t-a-p)\big |\\&\qquad +\beta _1(a'+k-a-h)\beta _2(t-a-p, s+t-a-p)\big |1-e^{-\int _{t-a-h-p}^{t-a-p}\mu (\sigma ,\sigma +s){\mathrm{d}}\sigma }\big |\\&\qquad +\big |\beta _1(a'+k-a-h)-\beta _1(a'-a)\big |\beta _2(t-a-p, s+t-a-p)\\&\quad \le \beta _1(a'+k-a-h)K_{\beta }2h+{\bar{\beta }}(a'+k-a-h)(1-e^{{\bar{\mu }}h})\\&\qquad +\big |\beta _1(a'+k-a-h)-\beta _1(a'-a)\big |\beta _2(t-a-p, s+t-a-p)\\&\quad \le \beta _1(a'+k-a-h)K_{\beta }2h+{\bar{\beta }}(a'+k-a-h)(1-e^{{\bar{\mu }}h})\\&\qquad +\big |\beta _1(a'+k-a-h)-\beta _1(a'-a)\big |\beta _2^{\sup } \end{aligned}$$

by Assumption 2.1(i) on \(\beta\) being Lipschitz continuous and \(K_{\beta }\) as the Lipschitz constant, where

$$\begin{aligned} \beta _2^{\sup }:=\sup _{(a, s)\in (0, \infty )\times (0, \infty )}\beta _2(a, s)<\infty \end{aligned}$$

because Assumption 2.1(iv) holds. Thus,

$$\begin{aligned} J_1^1&\le \int _{0}^{t}\int _{a}^{\infty }\big (\beta _1(a'+k-a-h)K_{\beta }2h+{\bar{\beta }}(a'+k-a-h)(1-e^{{\bar{\mu }}h})\big )\big (\int _{0}^{t-a-h}\int _{0}^{\infty }b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\quad +\int _{0}^{t}\int _{a}^{\infty }\big |\beta _1(a'+k-a-h)-\beta _1(a'-a)\big |\beta _2^{\sup }\big (\int _{0}^{t-a-h}\int _{0}^{\infty }b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\le \int _{0}^{t}\int _{a}^{\infty }\big (\beta _1(a'+k-a-h)K_{\beta }2h+{\bar{\beta }}(a'+k-a-h)(1-e^{{\bar{\mu }}h})\big )\big (\int _{0}^{t-a-h}2\beta _{\max }\Vert \phi \Vert _E e^{4\beta _{\max }p}{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\quad +\int _{0}^{t}\int _{a}^{\infty }\big |\beta _1(a'+k-a-h)-\beta _1(a'-a)\big |\beta _2^{\sup }\big (\int _{0}^{t-a-h}2\beta _{\max }\Vert \phi \Vert _E e^{4\beta _{\max }p}{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\rightarrow 0 \; {{\text { uniformly for }}} \phi \in K {{\text { as }}} h,k\rightarrow 0^+ \end{aligned}$$

and

$$\begin{aligned} J_1^2&\le \int _{0}^{t}\int _{a}^{\infty }{\bar{\beta }}(a'-a)\big (\int _{t-a}^{t-a-h}\int _{0}^{\infty }b_\phi (p, s){\mathrm{d}}s{\mathrm{d}}p\big ){\mathrm{d}}a'{\mathrm{d}}a\\&\le \big (\int _{0}^{\infty }{\bar{\beta }}(a'){\mathrm{d}}a'\big )\big (\int _{0}^{t}\int _{t-a-h}^{t-a}2\beta _{\max }\Vert \phi \Vert _E e^{4\beta _{\max }p}{\mathrm{d}}p{\mathrm{d}}a\big )\\&\rightarrow 0 \; {{\text { as }}} h,k\rightarrow 0^+ {{\text { uniformly for }}}\phi \in K, \end{aligned}$$

Therefore, we have \(J_1\rightarrow 0\) as \(h,k\rightarrow 0^+\) uniformly for \(\phi \in K\). And the fact that \(J_2\rightarrow 0\) uniformly for \(\phi \in K\) as \(h,k\rightarrow 0^+\) can be proved by using a similar argument. To show \(J_3\rightarrow 0\), we first

$$\begin{aligned}&\big |h_1(a'+k-a-h,p,s,t-a-h)-h_1(a'-a,p,s,t-a)\big |\\&\quad \le \big |\beta (a'+k-a-h,p+t-a-h,s+t-a-h)-\beta (a'-a,p+t-a,s+t-a)\big |e^{-\int _0^{t-a-h}\mu (\sigma +p,\sigma +s){\mathrm{d}}\sigma }\\&\qquad +\beta (a'-a,p+t-a,s+t-a)e^{-\int _0^{t-a-h}\mu (\sigma +p,\sigma +s){\mathrm{d}}\sigma }\big |1-e^{-\int _{t-a-h}^{t-a}\mu (\sigma +p,\sigma +s){\mathrm{d}}\sigma }\big |\\&\quad \le \big |\beta (a'+k-a-h,p+t-a-h,s+t-a-h)-\beta (a'-a,p+t-a-h,s+t-a-h)\big |\\&\qquad +\beta _1(a'-a)\big |\beta _2(p+t-a-h,s+t-a-h)-\beta _2(p+t-a,s+t-a)\big |\\&\qquad +\beta (a'-a,p+t-a,s+t-a)(1-e^{-{\underline{\mu }}h})\\&\quad \le \big |\beta (a'+k-a-h,p+t-a-h,s+t-a-h)-\beta (a'-a,p+t-a-h,s+t-a-h)\big |\\&\qquad +\beta _1(a'-a)K_{\beta }2h+{\bar{\beta }}(a'-a)(1-e^{-{\underline{\mu }}h}). \end{aligned}$$

Then by applying Assumption  2.1(ii), we have \(J_3\rightarrow 0\) uniformly for \(\phi \in K\).

Therefore, we have the first term in (A.3) goes to 0 uniformly for \(\phi \in K\). Secondly,

based on estimate (4.8) in the main text we have

$$\begin{aligned}&\int _{k-h}^{t-h} \int _{a+h-k}^{a}\big |S_2(t)\phi (a+h,a'+k)\big |{\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{k-h}^{t-h} \int _{a+h-k}^{a}b_{\phi }(t-a-h,a'+k-a-h){\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{k-h}^{t-h}\big |\int _{a+h-k}^{a}{\bar{\beta }}(a'){\mathrm{d}}a'\big |\big (4\Vert \phi \Vert _E\beta _{\max }\int _0^{t}e^{4\beta _{\max }p}{\mathrm{d}}pp+\Vert \phi \Vert _E\big ){\mathrm{d}}a\\&\quad \le \sup _{0<a<t}\big |\int _{a+h-k}^{a}{\bar{\beta }}(a'){\mathrm{d}}a'\big |\cdot t \cdot \big (4\Vert \phi \Vert _E\beta _{\max }\int _0^{t}e^{4\beta _{\max }p}{\mathrm{d}}p+\Vert \phi \Vert _E\big )\\&\quad \rightarrow 0 \; {{\text { as }}} h,k\rightarrow 0^+ {{\text { uniformly for }}}\phi \in K. \end{aligned}$$

Further,

$$\begin{aligned}&\int _0^{k-h} \int _0^{a}\big |S_2(t)\phi (a+h,a'+k)\big | {\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _0^{k-h} \int _0^{a} b_{\phi }(t-a-h,a'+k-a-h){\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _0^{k-h} \int _0^{\infty } b_{\phi }(t-a-h,s){\mathrm{d}}s{\mathrm{d}}a \le 2\beta _{\max }\Vert \phi \Vert _E\int _0^{k-h}e^{4\beta _{\max }(t-a-h)}{\mathrm{d}}a \\&\quad \rightarrow 0 \; {{\text { as }}} h,k\rightarrow 0^+ {{\text { uniformly for }}}\phi \in K. \end{aligned}$$

Lastly,

$$\begin{aligned}&\int _{t-h}^{t} \int _a^{\infty }\big |S_2(t)\phi (a,a')\big | {\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{t-h}^{t} \int _a^{\infty } b_{\phi }(t-a,a'-a){\mathrm{d}}a'{\mathrm{d}}a\\&\quad \le \int _{t-h}^{t} \int _0^{\infty } b_{\phi }(t-a,s){\mathrm{d}}s{\mathrm{d}}a \le 2\beta _{\max }\Vert \phi \Vert _E\int _{t-h}^{t}e^{4\beta _{\max }(t-a)}{\mathrm{d}}a \\&\quad \rightarrow 0{{\text { as }}} h\rightarrow 0^+ {{\text { uniformly for }}}\phi \in K. \end{aligned}$$

We thus proved (A.1). For (A.2), we have

$$\begin{aligned}&\int _{h}^{\infty } \int _{k}^{\infty }\big |S_2(t)\phi (a,a')\big |{\mathrm{d}}a{\mathrm{d}}a'\\&\quad \le \int _{h}^{\infty } \int _0^{\infty }b_{\phi }(t-a,s){\mathrm{d}}s{\mathrm{d}}a \\&\quad \le 2\Vert \phi \Vert _E\beta _{\max }\int _{h}^{\infty }e^{4\beta _{\max }(t-a)}{\mathrm{d}}a\rightarrow 0 \end{aligned}$$

as \(h,k\rightarrow 0\) uniformly for \(\phi \in K\). We can show that \(S_3(t)\) is compact for sufficiently large t in the same way. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Huo, X. & Ruan, S. On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures. Annali di Matematica 200, 403–452 (2021). https://doi.org/10.1007/s10231-020-01001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01001-5

Keywords

Mathematics Subject Classification

Navigation