Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Flat optics with dispersion-engineered metasurfaces

Abstract

Control over the dispersion of the refractive index is essential to the performance of most modern optical systems. These range from laboratory microscopes to optical fibres and even consumer products, such as photography cameras. Conventional methods of engineering optical dispersion are based on altering material composition, but this process is time-consuming and difficult, and the resulting optical performance is often limited to a certain bandwidth. Recent advances in nanofabrication have led to high-quality metasurfaces with the potential to perform at a level comparable to their state-of-the-art refractive counterparts. In this Review, we introduce the underlying physical principles of metasurface optical elements (with a focus on metalenses) and, drawing on various works in the literature, discuss how their constituent nanostructures can be designed with a highly customizable effective index of refraction that incorporates both phase and dispersion engineering. These metasurfaces can serve as an essential component for achromatic optics with unprecedented levels of performance across a broad bandwidth or provide highly customized, engineered chromatic behaviour in instruments such as miniature aberration-corrected spectrometers. We identify some key areas in which these achromatic or dispersion-engineered metasurface optical elements could be useful and highlight some future challenges, as well as promising ways to overcome them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromatic metalenses across the electromagnetic spectrum.
Fig. 2: Flow chart for designing a metasurface.
Fig. 3: Topology optimization and local approximation for designing large metalenses.
Fig. 4: Metalenses designed by topology optimization.
Fig. 5: Broadband achromatic metalenses.
Fig. 6: Dispersion-engineered metasurfaces and metalenses.
Fig. 7: Applications of metalenses with designed chromatic dispersion.

Similar content being viewed by others

References

  1. Grüner-Nielsen, L. et al. Dispersion-compensating fibers. J. Lightwave Technol. 23, 3566–3579 (2005).

    Google Scholar 

  2. Smith, G. H., Novak, D. & Ahmed, Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Tech. 45, 1410–1415 (1997).

    Google Scholar 

  3. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000).

    CAS  Google Scholar 

  4. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    CAS  Google Scholar 

  5. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    CAS  Google Scholar 

  6. Herzberger, M. & McClure, N. R. The design of superachromatic lenses. Appl. Opt. 2, 553–560 (1963).

    Google Scholar 

  7. Newton, I. A new theory about light and colors. Am. J. Phys. 61, 108–112 (1993).

    Google Scholar 

  8. Hartmann, P. Optical Glass (SPIE, 2014).

  9. Hartmann, P., Jedamzik, R., Reichel, S. & Schreder, B. Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49, D157–D176 (2010).

    CAS  Google Scholar 

  10. Voelkel, R. Wafer-scale micro-optics fabrication. Adv. Opt. Technol. 1, 135–150 (2012).

    CAS  Google Scholar 

  11. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Google Scholar 

  12. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).

    Google Scholar 

  13. Li, B., Piyawattanametha, W. & Qiu, Z. Metalens-based miniaturized optical systems. Micromachines 10, 310 (2019).

    Google Scholar 

  14. Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Google Scholar 

  15. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    CAS  Google Scholar 

  16. Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015).

    CAS  Google Scholar 

  17. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  18. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    CAS  Google Scholar 

  19. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

    CAS  Google Scholar 

  20. Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).

    CAS  Google Scholar 

  21. Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    CAS  Google Scholar 

  22. Liang, Y. et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials 8, 288 (2018).

    Google Scholar 

  23. Brière, G. et al. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 7, 1801271 (2019).

    Google Scholar 

  24. Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345–6352 (2017).

    CAS  Google Scholar 

  25. Sell, D., Yang, J., Doshay, S., Zhang, K. & Fan, J. A. Visible light metasurfaces based on single-crystal silicon. ACS Photonics 3, 1919–1925 (2016).

    CAS  Google Scholar 

  26. Zhou, Z. et al. Efficient silicon metasurfaces for visible light. ACS Photonics 4, 544–551 (2017).

    CAS  Google Scholar 

  27. Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235–5240 (2016).

    CAS  Google Scholar 

  28. Ye, M., Peng, Y. & Yi, Y. S. Silicon-rich silicon nitride thin films for subwavelength grating metalens. Opt. Mater. Express 9, 1200–1207 (2019).

    CAS  Google Scholar 

  29. Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photonics 3, 209–214 (2016).

    CAS  Google Scholar 

  30. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    CAS  Google Scholar 

  31. Iyer, P. P. et al. Unidirectional luminescence from quantum well metasurfaces. Preprint at arXiv https://arxiv.org/abs/1905.01816v1 (2019).

  32. Li, Q. et al. Single-mode GaN nanowire lasers. Opt. Express 20, 17873–17879 (2012).

    CAS  Google Scholar 

  33. Li, C. et al. Nonpolar InGaN/GaN core–shell single nanowire lasers. Nano Lett. 17, 1049–1055 (2017).

    CAS  Google Scholar 

  34. Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).

    CAS  Google Scholar 

  35. Chen, W. T. et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 17, 3188–3194 (2017).

    CAS  Google Scholar 

  36. He, D. et al. Polarization-insensitive meta-lens doublet with large view field in the ultraviolet region. Proc. SPIE Int. Symp. Adv. Opt. Manufact. Testing Technol. https://doi.org/10.1117/12.2505584 (2019).

  37. Deng, Y. et al. All-silicon broadband ultraviolet metasurfaces. Adv. Mater. 30, 1802632 (2018).

    Google Scholar 

  38. Ollanik, A. J., Smith, J. A., Belue, M. J. & Escarra, M. D. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photonics 5, 1351–1358 (2018).

    CAS  Google Scholar 

  39. Zhang, C. et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, 55 (2020).

    CAS  Google Scholar 

  40. Engelberg, J. et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 9, 361–370 (2020).

    Google Scholar 

  41. Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    CAS  Google Scholar 

  42. Vo, S. et al. Sub-wavelength grating lenses with a twist. IEEE Photonics Technol. Lett. 26, 1375–1378 (2014).

    Google Scholar 

  43. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    CAS  Google Scholar 

  44. Fan, Q. et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Appl. Phys. Lett. 113, 201104 (2018).

    Google Scholar 

  45. Zuo, H. et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv. Opt. Mater. 5, 1700585 (2017).

    Google Scholar 

  46. Yan, C. et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Appl. Phys. Lett. 114, 161904 (2019).

    Google Scholar 

  47. Zhang, L. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).

    Google Scholar 

  48. Shalaginov, M. Y. et al. A single-layer panoramic metalens with >170° diffraction-limited field of view. Preprint at arXiv https://arxiv.org/abs/1908.03626 (2019).

  49. Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    CAS  Google Scholar 

  50. Aieta, F., Genevet, P., Kats, M. & Capasso, F. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530–31539 (2013).

    Google Scholar 

  51. Liang, H. et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6, 1461–1470 (2019).

    CAS  Google Scholar 

  52. Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).

    CAS  Google Scholar 

  53. Faraji-Dana, M. et al. Compact folded metasurface spectrometer. Nat. Commun. 9, 4196 (2018).

    Google Scholar 

  54. Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photonics 6, 2161–2167 (2019).

    CAS  Google Scholar 

  55. Zhu, A. Y. et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces. Adv. Opt. Mater. 7, 1801144 (2019).

    Google Scholar 

  56. Zhu, A. Y. et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics 2, 036103 (2017).

    Google Scholar 

  57. Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16, 3732–3737 (2016).

    CAS  Google Scholar 

  58. Nikolova, L. & Ramanujam, P. S. Polarization Holography (Cambridge Univ. Press, 2009).

  59. Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).

    Google Scholar 

  60. Gori, F. Measuring Stokes parameters by means of a polarization grating. Opt. Lett. 24, 584–586 (1999).

    CAS  Google Scholar 

  61. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Google Scholar 

  62. Escuti, M. J., Kim, J. & Kudenov, M. W. Controlling light with geometric-phase holograms. Opt. Photonics News 27, 22–29 (2016).

    Google Scholar 

  63. Kikuta, H., Ohira, Y. & Iwata, K. Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. 36, 1566–1572 (1997).

    CAS  Google Scholar 

  64. Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012).

    CAS  Google Scholar 

  65. Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015).

    Google Scholar 

  66. Wang, D. et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small 15, 1900483 (2019).

    Google Scholar 

  67. Chen, W. T., Zhu, A. Y., Sisler, J., Bharwani, Z. & Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019).

    CAS  Google Scholar 

  68. Yoon, G., Lee, D., Nam, K. T. & Rho, J. Geometric metasurface enabling polarization independent beam splitting. Sci. Rep. 8, 9468 (2018).

    Google Scholar 

  69. Zhang, X. et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes. Nanoscale 10, 9304–9310 (2018).

    CAS  Google Scholar 

  70. Zhan, T., Xiong, J., Lee, Y.-H. & Wu, S.-T. Polarization-independent Pancharatnam-Berry phase lens system. Opt. Express 26, 35026–35033 (2018).

    CAS  Google Scholar 

  71. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018).

    CAS  Google Scholar 

  72. Kenney, M. et al. Large area metasurface lenses in the NIR region. Proc. SPIE Model. Aspects Opt. Metrology VII https://doi.org/10.1117/12.2527157 (2019).

  73. Ra’di, Y., Sounas, D. L. & Alù, A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett. 119, 067404 (2017).

    Google Scholar 

  74. Fan, Z. et al. Perfect diffraction with multiresonant bianisotropic metagratings. ACS Photonics 5, 4303–4311 (2018).

    CAS  Google Scholar 

  75. Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

    Google Scholar 

  76. Kamali, S. M. et al. Angle-multiplexed metasurfaces: encoding independent Wavefronts in a single metasurface under different illumination angles. Phys. Rev. X 7, 041056 (2017).

    Google Scholar 

  77. Wenwei, L. et al. Metasurface enabled wide-angle Fourier lens. Adv. Mater. 30, 1706368 (2018).

    Google Scholar 

  78. Qiu, M. et al. Angular dispersions in terahertz metasurfaces: physics and applications. Phys. Rev. Appl. 9, 054050 (2018).

    Google Scholar 

  79. Backer, A. S. Computational inverse design for cascaded systems of metasurface optics. Opt. Express 27, 30308–30331 (2019).

    Google Scholar 

  80. Pestourie, R. et al. Inverse design of large-area metasurfaces. Opt. Express 26, 33732–33747 (2018).

    CAS  Google Scholar 

  81. Jensen, J. S. & Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011).

    CAS  Google Scholar 

  82. Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693–21701 (2013).

    Google Scholar 

  83. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).

    CAS  Google Scholar 

  84. Burger, M., Osher, S. J. & Yablonovitch, E. Inverse problem techniques for the design of photonic crystals. IEICE Trans. Electron. 87, 258–265 (2004).

    Google Scholar 

  85. Miller, O. D. Photonic design: from fundamental solar cell physics to computational inverse design. Preprint at arXiv https://arxiv.org/abs/1308.0212 (2013).

  86. Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).

    CAS  Google Scholar 

  87. Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8, 48 (2019).

    Google Scholar 

  88. Byrnes, S. J., Lenef, A., Aieta, F. & Capasso, F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express 24, 5110–5124 (2016).

    CAS  Google Scholar 

  89. Lin, Z., Liu, V., Pestourie, R. & Johnson, S. G. Topology optimization of freeform large-area metasurfaces. Opt. Express 27, 15765–15775 (2019).

    CAS  Google Scholar 

  90. Zhang, H., Hsu, C. W. & Miller, O. D. Scattering concentration bounds: brightness theorems for waves. Optica 6, 1321–1327 (2018).

    Google Scholar 

  91. Lin, Z. & Johnson, S. G. Overlapping domains for topology optimization of large-area metasurfaces. Opt. Express 27, 32445–32453 (2019).

    CAS  Google Scholar 

  92. Torfeh, M. & Arbabi, A. Analysis and design of metasurfaces using the discrete-space impulse response technique. Proc. SPIE High Contrast Metastruct. VIII https://doi.org/10.1117/12.2510098 (2019).

  93. Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    Google Scholar 

  94. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    CAS  Google Scholar 

  95. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    CAS  Google Scholar 

  96. Kempe, M., Stamm, U., Wilhelmi, B. & Rudolph, W. Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems. J. Opt. Soc. Am. B 9, 1158–1165 (1992).

    Google Scholar 

  97. Weiner, A. M. in Ultrafast Optics (Wiley, 2008).

  98. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    Google Scholar 

  99. Tong, L., Lou, J. & Mazur, E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004).

    CAS  Google Scholar 

  100. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    CAS  Google Scholar 

  101. Li, Y. et al. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885 (2016).

    CAS  Google Scholar 

  102. Veronis, G. & Fan, S. Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol. 25, 2511–2521 (2007).

    Google Scholar 

  103. Pu, M., Ma, X., Guo, Y., Li, X. & Luo, X. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018).

    CAS  Google Scholar 

  104. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).

    Google Scholar 

  105. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625–632 (2017).

    Google Scholar 

  106. Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819–1824 (2017).

    CAS  Google Scholar 

  107. Shkondin, E. et al. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition. J. Vac. Sci. Technol. A 34, 031605 (2016).

    Google Scholar 

  108. Zhou, Y. et al. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci. Appl. 8, 80 (2019).

    Google Scholar 

  109. Pu, M., Li, X., Guo, Y., Ma, X. & Luo, X. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express 25, 31471–31477 (2017).

    CAS  Google Scholar 

  110. Yin, X. et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev. 13, 1800081 (2019).

    Google Scholar 

  111. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).

    CAS  Google Scholar 

  112. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    CAS  Google Scholar 

  113. Chen, N., Zuo, C., Lam, E. Y. & Lee, B. 3D imaging based on depth measurement technologies. Sensors 18, 3711 (2018).

    Google Scholar 

  114. Fan, Z.-B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 8, 67 (2019).

    Google Scholar 

  115. Hoffman, D. M., Girshick, A. R., Akeley, K. & Banks, M. S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vision 8, 33 (2008).

    Google Scholar 

  116. Liu, S. et al. A multi-plane optical see-through head mounted display design for augmented reality applications. J. Soc. Inf. Display 24, 246–251 (2016).

    CAS  Google Scholar 

  117. Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Lett. 18, 7801–7808 (2018).

    CAS  Google Scholar 

  118. Stone, T. & George, N. Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27, 2960–2971 (1988).

    CAS  Google Scholar 

  119. Sawant, R. et al. Mitigating chromatic dispersion with hybrid optical metasurfaces. Adv. Mater. 31, 1805555 (2019).

    Google Scholar 

  120. Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015).

    Google Scholar 

  121. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    CAS  Google Scholar 

  122. Gao, N. et al. Ultra-dispersive anomalous diffraction from Pancharatnam-Berry metasurfaces. Appl. Phys. Lett. 113, 113103 (2018).

    Google Scholar 

  123. Zhou, Y., Chen, R. & Ma, Y. Characteristic analysis of compact spectrometer based on off-axis meta-lens. Appl. Sci. 8, 321 (2018).

    Google Scholar 

  124. Chen, W. T. et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016).

    Google Scholar 

  125. Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).

    CAS  Google Scholar 

  126. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).

    CAS  Google Scholar 

  127. Camayd-Muñoz, P., Roberts, G., Debbas, M., Ballew, C. & Faraon, A. Inverse-designed spectrum splitters for color imaging. Proc. Conf. Lasers Electro-Opt. AM4K, AM4K.3 (2019).

  128. Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).

    CAS  Google Scholar 

  129. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Google Scholar 

  130. Harm, W., Roider, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Dispersion tuning with a varifocal diffractive-refractive hybrid lens. Opt. Express 22, 5260–5269 (2014).

    CAS  Google Scholar 

  131. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).

    Google Scholar 

  132. Aiello, M. D. et al. Achromatic varifocal metalens for the visible spectrum. ACS Photonics 6, 2432–2440 (2019).

    CAS  Google Scholar 

  133. Zhang, J., Zhang, L., Huang, K., Duan, Z. & Zhao, F. Polarization-enabled tunable focusing by visible-light metalenses with geometric and propagation phase. J. Opt. 21, 115102 (2019).

    CAS  Google Scholar 

  134. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    CAS  Google Scholar 

  135. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).

    CAS  Google Scholar 

  136. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).

    CAS  Google Scholar 

  137. Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).

    CAS  Google Scholar 

  138. Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).

    CAS  Google Scholar 

  139. Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953–957 (2018).

    Google Scholar 

  140. Faklis, D. & Morris, G. M. Polychromatic diffractive lens. US Patent US5589982A (1996).

  141. Faklis, D. & Morris, G. M. Spectral properties of multiorder diffractive lenses. Appl. Opt. 34, 2462–2468 (1995).

    CAS  Google Scholar 

  142. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    CAS  Google Scholar 

  143. Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett. 15, 5358–5362 (2015).

    CAS  Google Scholar 

  144. Hu, T. et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018).

    CAS  Google Scholar 

  145. Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    CAS  Google Scholar 

  146. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Google Scholar 

  147. Ahn, S. H. & Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304–2310 (2009).

    CAS  Google Scholar 

  148. Chen, X. et al. Plasmonic roller lithography. Nanotechnology 30, 105202 (2019).

    CAS  Google Scholar 

  149. Geary, J. M. Introduction to Lens Design: With Practical ZEMAX Examples (Willmann-Bell, 2002).

  150. Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

    CAS  Google Scholar 

  151. Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).

    Google Scholar 

  152. Wilson, D. W., Maker, P. D., Muller, R. E., Mouroulis, P. Z. & Backlund, J. Recent advances in blazed grating fabrication by electron-beam lithography. Proc. SPIE Curr. Dev. Lens Design Opt. Eng. IV https://doi.org/10.1117/12.510204 (2003).

  153. Arat, K. T. et al. Electron beam lithography on curved or tilted surfaces: Simulations and experiments. J. Vac. Sci. Technol. B 37, 051604 (2019).

    Google Scholar 

  154. Jiang, J. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).

    CAS  Google Scholar 

  155. Jiang, J. & Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19, 5366–5372 (2019).

    CAS  Google Scholar 

  156. An, S. et al. Multifunctional metasurface design with a generative adversarial network. Preprint at arXiv https://arxiv.org/abs/1908.04851 (2019).

  157. Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).

    CAS  Google Scholar 

  158. Decker, M. et al. Imaging performance of polarization-insensitive metalenses. ACS Photonics 6, 1493–1499 (2019).

    CAS  Google Scholar 

  159. Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805–810 (2019).

    CAS  Google Scholar 

  160. Banerji, S., Meem, M., Majumder, A., Sensale-Rodriguez, B. & Menon, R. Imaging over an unlimited bandwidth with a single diffractive surface. Preprint at arXiv https://arxiv.org/abs/1907.06251 (2019).

  161. Banerji, S. et al. Single flat lens enabling imaging in the short-wave infra-red (SWIR) band. OSA Continuum 2, 2968–2974 (2019).

    CAS  Google Scholar 

  162. Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    CAS  Google Scholar 

  163. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 1, 119–122 (2007).

    CAS  Google Scholar 

  164. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS  Google Scholar 

  165. Akselrod, G. M. Optics for automotive lidar: Metasurface beam steering enables solid-state, high-performance lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14036818/metasurface-beam-steering-enables-solidstate-highperformance-lidar (2019).

  166. Luo, X. Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 31, 1804680 (2019).

    Google Scholar 

  167. Li, X. et al. Dispersion engineering in metamaterials and metasurfaces. J. Phys. D Appl. Phys. 51, 054002 (2018).

    Google Scholar 

  168. Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995–16021 (2018).

    CAS  Google Scholar 

  169. Luo, X. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018).

    CAS  Google Scholar 

  170. Pu, M., Guo, Y., Ma, X., Li, X. & Luo, X. Methodologies for on-demand dispersion engineering of waves in metasurfaces. Adv. Opt. Mater. 7, 1801376 (2019).

    Google Scholar 

  171. Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018).

    Google Scholar 

  172. Cui, T., Bai, B. & Sun, H.-B. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 29, 1806692 (2019).

    Google Scholar 

  173. Zhang, S. et al. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, 111104 (2018).

    Google Scholar 

  174. Ye, M., Ray, V. & Yi, Y. S. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technol. Lett. 30, 955–958 (2018).

    CAS  Google Scholar 

  175. Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).

    Google Scholar 

  176. Zhou, H., Chen, L., Shen, F., Guo, K. & Guo, Z. Broadband achromatic metalens in the midinfrared range. Phys. Rev. Appl. 11, 024066 (2019).

    CAS  Google Scholar 

  177. Zhang, F., Zhang, M., Cai, J., Ou, Y. & Yu, H. Metasurfaces for broadband dispersion engineering through custom-tailored multi-resonances. Appl. Phys. Express 11, 082004 (2018).

    Google Scholar 

  178. Zhao, F. et al. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. J. Phys. D Appl. Phys. 52, 505110 (2019).

    CAS  Google Scholar 

  179. Yu, B., Wen, J., Chen, X. & Zhang, D. An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit. Appl. Phys. Express 12, 092003 (2019).

    CAS  Google Scholar 

  180. Lalanne, P. Waveguiding in blazed-binary diffractive elements. J. Opt. Soc. Am. A 16, 2517–2520 (1999).

    Google Scholar 

  181. Wang, S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).

    CAS  Google Scholar 

  182. Karagodsky, V., Sedgwick, F. G. & Chang-Hasnain, C. J. Theoretical analysis of subwavelength high contrast grating reflectors. Opt. Express 18, 16973–16988 (2010).

    Google Scholar 

  183. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Google Scholar 

  184. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    CAS  Google Scholar 

  185. Overvig, A. C., Shrestha, S. & Yu, N. Dimerized high contrast gratings. Nanophotonics 7, 1157–1168 (2018).

    CAS  Google Scholar 

  186. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    CAS  Google Scholar 

  187. Pfeiffer, C. et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 14, 2491–2497 (2014).

    CAS  Google Scholar 

  188. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    CAS  Google Scholar 

  189. Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009).

    CAS  Google Scholar 

  190. Guo, Y. et al. Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging. iScience 21, 145–156 (2019).

    Google Scholar 

  191. Luo, X., Tsai, D., Gu, M. & Hong, M. Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA, grant no. HR00111810001). The authors thank Zhujun Shi for helpful discussion on topology optimization.

Author information

Authors and Affiliations

Authors

Contributions

W.T.C. researched data for the article. W.T.C., A.Y.Z. and F.C. contributed to the discussion of content and wrote the article.

Corresponding authors

Correspondence to Wei Ting Chen or Federico Capasso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

A new centre of excellence for transformative meta-optical systems: https://www.arc.gov.au/2020-arc-centre-excellence-transformative-meta-optical-systems

DARPA extreme-optics programme: https://www.darpa.mil/program/extreme-optics-and-imaging

Leica Inc. developed an instrument for precise alignment of lenses: https://www.osa.org/en-us/meetings/webinar/older/values_of_microscope_objectives/

LightTrans: https://www.lighttrans.com/virtuallab-fusion-product-sheets/metalens-and-metasurface-holograms.html

Lux Research forecasted market opportunity in metamaterials: https://www.luxresearchinc.com/press-releases/lux-research-forecasts-10.7-billion-market-opportunity-in-metamaterial-devices

OSA incubator meeting of flat optics: https://www.osa.org/en-us/meetings/incubator_meetings/2020/flatopticsinc/

PlanOpSim: https://www.planopsim.com/

Samsung research award: https://www.sait.samsung.co.kr/saithome/about/collabo_apply.do

Sony research award: https://www.sony.com/research-award-program#FocusedResearchAward

Synopsys: https://www.synopsys.com/optical-solutions/rsoft/rsoft-product-applications/metalens_design_simulation_rsoft_codev.html

The World Economic Forum and Scientific American: https://www.scientificamerican.com/article/tiny-lenses-will-enable-design-of-miniature-optical-devices/

Zemax has teamed up with Lumerical: https://apps.lumerical.com/zemax-interoperability-metalens.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W.T., Zhu, A.Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). https://doi.org/10.1038/s41578-020-0203-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-0203-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing