Skip to main content
Log in

Radio Sounding Measurements of the Solar Corona Using Giant Pulses of the Crab Pulsar in 2018

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations of the Crab pulsar at 327 MHz were made at the Toyokawa Observatory of the Institute for Space-Earth Environmental Research, during the solar occultation in mid-June 2018 to investigate the coronal plasma density in the weak sunspot cycle, Cycle 24. The dispersion measurements (DMs) were determined using giant pulses detected from observations of the Crab pulsar. The systematic increase in DM over the background level, observed during the period of the closest approach of the Crab pulsar’s line-of-sight to the Sun, was ascribed to the effect of the coronal plasma. A coronal density model assuming spherical symmetry was determined by fitting it to the DM data, and was compared with those determined in past solar cycles. The best-fit model had large errors, and indicated a systematically higher value than those derived from past observations. The results obtained here are likely to be significantly affected by latitude/longitude variation in coronal plasma density, the time variation of the interstellar medium, mainly the Crab nebula, and increased measurement errors due to the reduced occurrence of giant pulses. Hence, further observations are needed to derive conclusions about a change of coronal density in the current cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. Pulsar timing observations provide various kinds of information in astrophysics, since a small change in integrated plasma density along the line-of-sight causes significant time delay in pulse arrival times, accurate correction of the solar wind variation is required for high precision pulsar timing (Madison et al., 2019; Tiburzi et al., 2019).

References

  • Bisoi, S.K., Janardhan, P., Ingale, M., Subramanian, P., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2014, A study of density modulation index in the inner heliospheric solar wind during Solar Cycle 23. Astrophys. J.795, 69. DOI.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI.

    Article  ADS  Google Scholar 

  • Cognard, I., Bourgois, G., Lestrade, J.F., Biraud, F., Aubry, D., Darchy, B., Drouhin, J.P.: 1996, High-precision timing observations of the millisecond pulsar PSR 1821–24 at Nancay. Astron. Astrophys.311, 179.

    ADS  Google Scholar 

  • Cordes, J.M., Bhat, N.D.R., Hankins, T.H., McLaughlin, M.A., Kern, J.: 2004, The brightest pulses in the universe: multifrequency observations of the Crab pulsar’s giant pulses. Astrophys. J.612, 375. DOI.

    Article  ADS  Google Scholar 

  • Counselman, C.C., Rankin, J.M.: 1972, Density of the solar corona from occultations of NP 0532. Astrophys. J.175, 843. DOI.

    Article  ADS  Google Scholar 

  • Counselman, C.C., Rankin, J.M.: 1973, Changes in the distribution of density and radio scattering in the solar corona in 1971. Astrophys. J.185, 357. DOI.

    Article  ADS  Google Scholar 

  • Counselman, C.C., Shapiro, I. I.: 1968, Scientific uses of pulsars. Science166, 352. DOI.

    Article  ADS  Google Scholar 

  • Edwards, R.T., Hobbs, G.B., Manchester, R.N.: 2006, TEMPO2, a new pulsar timing package – II. The timing model and precision estimates. Mon. Not. Roy. Astron. Soc.372, 1549. DOI.

    Article  ADS  Google Scholar 

  • Eselevich, M., Eselevich, V., Fujiki, K.: 2007, Streamer belt and chains as the main sources of quasi-stationary slow solar wind. Solar Phys.240, 135. DOI.

    Article  ADS  Google Scholar 

  • Isaacman, R., Rankin, J.M.: 1977, The Crab nebula pulsar: variability of dispersion and scattering. Astrophys. J.214, 214. DOI.

    Article  ADS  Google Scholar 

  • Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, The prelude to the deep minimum between Solar Cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. Geophys. Res. Lett.38, L20108. DOI.

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of the solar wind speed. Space Sci. Rev.53, 173. DOI.

    Article  ADS  Google Scholar 

  • Kojima, M., Tokumaru, M., Fujiki, K., Hayashi, K., Jackson, B.V.: 2007, IPS tomographic observations of 3D solar wind structure. Astron. Astrophys. Trans.26, 467. DOI.

    Article  ADS  Google Scholar 

  • Kuz’min, A.D., Belyatsky, Y.A., Dumsky, D.V., Izvekova, V.A., Lapaev, K.A., Logvinenko, S.V., Losovsky, B.Y., Pugachev, V.D.: 2011, Monitoring of the radio emission of the Crab nebula pulsar at low frequencies. Astron. Rep.55, 416. DOI.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys.183, 165. DOI.

    Article  ADS  Google Scholar 

  • Lundgren, S.C., Cordes, J.M., Ulmer, M., Matz, S.M., Lomatch, S., Foster, R.S., Hankins, T.: 1995, Giant pulses from the Crab pulsar: a joint radio and gamma-ray study. Astrophys. J.453, 433. DOI.

    Article  ADS  Google Scholar 

  • Lyne, A.G., Graham-Smith, F.: 1998, Pulsar Astronomy, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lyne, A.G., Pritchard, R.S., Smith, F.G.: 1988, Crab pulsar timing 1982–87. Mon. Not. Roy. Astron. Soc.233, 667.

    Article  ADS  Google Scholar 

  • Lyne, A.G., Pritchard, R.S., Smith, F.G.: 1993, 23 years of crab pulsar rotational history. Mon. Not. Roy. Astron. Soc.265, 1003. DOI.

    Article  ADS  Google Scholar 

  • Lyne, A.G., Roberts, M.E., Jordan, C.A.: 2018, Jodrell Bank Crab pulsar timing results. Monthly ephemeris (http://www.jb.man.ac.uk/pulsar/crab/crabnotes.ps).

  • Madison, D.R., Cordes, J.M., Arzoumanian, Z., Chatterjee, S., Crowter, K., DeCesar, M.E., Demorest, P.B., Dolch, T., Ellis, J.A., Ferdman, R.D., Ferrara, E.C., Fonseca, E., Gentile, P.A., Jones, G., Jones, M.L., Lam, M.T., Levin, L., Lorimer, D.R., Lynch, R.S., McLaughlin, M.A., Mingarelli, C.M.F., Ng, C., Nice, D.J., Pennucci, T.T., Ransom, S.M., Ray, P.S., Spiewak, R., Stairs, I.H., Stoval, K., Swiggum, J.K., Zhu, W.W.: 2019, The NANOGrav 11 yr data set: solar wind sounding through pulsar timing. Astrophys. J.872, 150. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett.35, L18103. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Angold, N., Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., Smith, C.W.: 2013, Weakest solar wind of the space and the current “mini” solar maximum. Astrophys. J.779, 10. DOI.

    Article  Google Scholar 

  • McKee, J.W., Lyne, A.G., Stappers, B.W., Bassa, C.G., Jordan, C.A.: 2018, Temporal variations in scattering and dispersion measure in the Crab pulsar and their effect on timing precision. Mon. Not. Roy. Astron. Soc.479, 4216. DOI.

    Article  ADS  Google Scholar 

  • Popov, M., Soglasnov, V., Kondratiev, V., Bilous, A., Moshkina, O., Oreshiko, V., Ilyasov, Y., Sekido, M., Kondo, T.: 2009, Multifrequency study of giant radio pulses from the Crab pulsar with the K5 VLBI recording terminal. Publ. Astron. Soc. Japan61, 1197. DOI.

    Article  ADS  Google Scholar 

  • Sime, D.G., Rickett, B.J.: 1981, Coronal density and the solar wind speed at all latitudes. J. Geophys. Res.86, 8869.

    Article  ADS  Google Scholar 

  • Smirnova, T.V., Chashei, I.V., Shishov, V.I.: 2009, Radio sounding of the circumsolar plasma using polarized pulsar pulses. Astron. Rep.53, 252. DOI.

    Article  ADS  Google Scholar 

  • Tiburzi, C., Verbiest, J.P., Shaifullah, G.M., Janssen, G.H., Anderson, J.M., Horneffer, A., Künsemöller, J., Osłowski, S., Donner, J.Y., Kramer, M., Kumari, A., Porayko, N.K., Zucca, P., Ciardi, B., Dettmar, R.-J., Grießmeier, J.M., Hoeft, M., Serylak, M.: 2019, On the usefulness of existing solar wind models for pulsar time corrections. Mon. Not. Roy. Astron. Soc.487, 397. DOI.

    Article  ADS  Google Scholar 

  • Tokumaru, M.: 2013, Three-dimensional exploration of the solar wind using observations of interplanetary scintillation. Proc. Japan Acad. Ser. B, Phys. Biol. Sci.89, 67. DOI.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Fujiki, K., Iju, T.: 2015, North-south asymmetry in global distribution of the solar wind speed during 1985–2013. J. Geophys. Res.120, 3283. DOI.

    Article  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2010, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res.115, A04102. DOI.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2012, Long-term evolution in the global distribution of solar wind speed and density fluctuations during 1997–2009. J. Geophys. Res.117, A06108. DOI.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Hayashi, K.: 2009, Non-dipolar solar wind structure observed in the Cycle 23/24 minimum. Geophys. Res. Lett.36, L09101. DOI.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Ito, H., Iju, T.: 2011, A newly developed UHF radiotelescope for interplanetary scintillation observations: solar wind imaging facility. Radio Sci.46, RS0F02. DOI.

    Article  Google Scholar 

  • Tokumaru, M., Shimoyama, T., Fujiki, K., Hakamada, K.: 2018, Rarefaction of the very-slow (<350 km/s) solar wind in Cycle 24 compared with Cycle 23. J. Geophys. Res.123, 2520. DOI.

    Article  Google Scholar 

  • Weisberg, J.M., Payne, R.R., Counselman, C.C.: 1976, Further changes in the distribution of density and radio scattering in the solar corona in 1973. Astrophys. J.209, 252. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (A) (25237079) and also partly by the ISEE director’s leadership fund for FY2015. The DM data for the Crab pulsar at Jodrell Bank Observatory were obtained from http://www.jb.man.ac.uk/~pulsar/crab.html. The IPS observations were conducted under the solar wind program of the ISEE. Solar wind data derived from ISEE IPS observations were available from ftp://ftp.isee.nagoya-u.ac.jp/pub/vlist. The WSO observations were obtained from http://wso.stanford.edu/synsourcel.html. The synoptic map of LASCO C3 observations was obtained from https://lasco-www.nrl.mil. The authors would like to thank Ms. Yuka Miyauchi (KSTC, NICT) and Mr. Yasushi Maruyama (ISEE, Nagoya Univ.) for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munetoshi Tokumaru.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokumaru, M., Tawara, K., Takefuji, K. et al. Radio Sounding Measurements of the Solar Corona Using Giant Pulses of the Crab Pulsar in 2018. Sol Phys 295, 80 (2020). https://doi.org/10.1007/s11207-020-01644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01644-w

Keywords

Navigation