Skip to main content
Log in

Preparation of entangled W states with cat-state qubits in circuit QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cat-state qubits (qubits encoded with cat states) have recently attracted much attention because of their enhanced lifetimes with quantum error correction. We here consider a circuit QED system consisting of three superconducting qutrits, each coupled to an individual cavity but all coupled to a common cavity. We show that entangled W states of three cat-state qubits hosted by the three individual cavities can be prepared with only a few basic operations. The higher energy level of the qutrits is not occupied; thus, decoherence from this level of the qutrits is greatly suppressed. In addition, the W states can be prepared deterministically. Numerical simulations show that high-fidelity production of the W states of three cat-state qubits is feasible with current circuit QED technology. This proposal is quite general and can be applied to create the proposed W states, with each cavity being a microwave or optical cavity and each qutrit being a three-level natural or artificial atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics (Long Island City, N.Y.) 1, 195 (1964)

    MathSciNet  Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Google Scholar 

  4. Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation? Phys. Lett. A 314, 267 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    ADS  Google Scholar 

  6. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum Secure Communication with W States (2002). (arXiv:quant-ph/0204003)

  7. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein–Podolsky–Rosen pairs of atoms. Phys. Rev. Lett. 79, 1 (1997)

    ADS  Google Scholar 

  8. Sharma, S.S., Almeida, E., Sharma, N.K.: Multipartite entanglement of three trapped ions in a cavity and W-state generation. J. Phys. B 41, 165503 (2008)

    Google Scholar 

  9. Li, G.X.: Generation of pure multipartite entangled vibrational states for ions trapped in a cavity. Phys. Rev. A 74, 055801 (2006)

    ADS  Google Scholar 

  10. Xue, P., Guo, G.C.: Scheme for preparation of mulipartite entanglement of atomic ensembles. Phys. Rev. A 67, 034302 (2003)

    ADS  Google Scholar 

  11. Gao, Y., Zhou, H., Zou, D., Peng, X., Du, J.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87, 032335 (2013)

    ADS  Google Scholar 

  12. Perez-Leija, A., Hernandez-Herrejon, J.C., Moya-Cessa, H.: Generating photon-encoded W states in multiport waveguide-array systems. Phys. Rev. A 87, 013842 (2013)

    ADS  Google Scholar 

  13. Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301 (2007)

    ADS  Google Scholar 

  14. Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66, 044302 (2002)

    ADS  Google Scholar 

  15. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    ADS  Google Scholar 

  16. Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)

    ADS  Google Scholar 

  17. Song, K.H., Zhou, Z.W., Guo, G.C.: Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition. Phys. Rev. A 71, 052310 (2005)

    ADS  Google Scholar 

  18. Song, K.H., Xiang, S.H., Liu, Q., Lu, D.H.: Quantum computation and W-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys. Rev. A 75, 032347 (2007)

    ADS  Google Scholar 

  19. Zhang, X.L., Gao, K.L., Feng, M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    ADS  Google Scholar 

  20. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    ADS  Google Scholar 

  21. Biswas, A., Agarwal, G.S.: Preparation of W, GHZ, and two-qutrit states using bimodal cavities. J. Mod. Opt. 51, 1627 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of large W states in optical cavities. Phys. Rev. A 87, 042323 (2013)

    ADS  Google Scholar 

  23. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Koärber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005)

    ADS  Google Scholar 

  24. Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.J.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764 (2009)

    ADS  Google Scholar 

  25. Choi, K.S., Goban, A., Papp, S.B., van Enk, S.J., Kimble, H.J.: Entanglement of spin waves among four quantum memories. Nature 468, 412 (2010)

    ADS  Google Scholar 

  26. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570 (2010)

    ADS  Google Scholar 

  27. Kirchmair, G., Vlastakis, B., Leghtas, Z., Nigg, S.E., Paik, H., Ginossar, E., Mirrahimi, M., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205 (2013)

    ADS  Google Scholar 

  28. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon Schrö inger cat states. Science 342, 607 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Sun, L., Petrenko, A., Leghtas, Z., Vlastakis, B., Kirchmair, G., Sliwa, K.M., Narla, A., Hatridge, M., Shankar, S., Blumoff, J., Frunzio, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444 (2014)

    ADS  Google Scholar 

  30. Vlastakis, B., Petrenko, A., Ofek, N., Sun, L., Leghtas, Z., Sliwa, K., Liu, Y., Hatridge, M., Blumoff, J., Frunzio, L., Mirrahimi, M., Jiang, L., Devoret, M.H., Schoelkopf, R.J.: Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality. Nat. Commun. 6, 8970 (2015)

    ADS  Google Scholar 

  31. Heeres, R.W., Reinhold, P., Ofek, N., Frunzio, L., Jiang, L., Devoret, M.H., Schoelkopf, R.J.: Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017)

    ADS  Google Scholar 

  32. Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441 (2016)

    ADS  Google Scholar 

  33. Yang, C.P., Zheng, Z.F.: Deterministic generation of GHZ entangled states of cat-state qubits in circuit QED. Opt. Lett. 43(20), 5127 (2018)

    ADS  Google Scholar 

  34. Mirrahimi, M., Leghtas, Z., Albert, V.V., Touzard, S., Schoelkopf, R.J., Jiang, L., Devoret, M.H.: Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014)

    ADS  MATH  Google Scholar 

  35. Nigg, S.E.: Deterministic Hadamard gate for microwave cat-state qubits in circuit QED. Phys. Rev. A 89, 022340 (2014)

    ADS  Google Scholar 

  36. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F., Han, S.: Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A 95, 052341 (2017)

    ADS  Google Scholar 

  37. Zhang, Y., Zhao, X., Zheng, Z.F., Yu, L., Su, Q.P., Yang, C.P.: Universal controlledphase gate with cat-state qubits in circuit QED. Phys. Rev. A 96, 052317 (2017)

    ADS  Google Scholar 

  38. Fan, Y.J., Zheng, Z.F., Zhang, Y., Lu, D.M., Yang, C.P.: One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys. 14(2), 21602 (2019)

    ADS  Google Scholar 

  39. Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrodinger cat living in two boxes. Science 352, 1087 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantuminterference-device qubits in cavity QED. Phys. Rev. A 67(4), 042311 (2003)

    ADS  Google Scholar 

  41. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68(6), 064509 (2003)

    ADS  Google Scholar 

  42. Blais, A., Huang, R.S., Wallra, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)

    ADS  Google Scholar 

  43. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42 (2005)

    Google Scholar 

  44. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    ADS  Google Scholar 

  45. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    ADS  Google Scholar 

  46. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85(2), 623 (2013)

    ADS  Google Scholar 

  47. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Li, P.B., Liu, Y.C., Gao, S.Y., Xiang, Z.L., Rabl, P., Xiao, Y.F., Li, F.L.: Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl. 4, 044003 (2015)

    ADS  Google Scholar 

  49. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    ADS  Google Scholar 

  50. James, D.F.V., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)

    ADS  Google Scholar 

  51. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    ADS  Google Scholar 

  52. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    ADS  Google Scholar 

  53. Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J., Blais, A., Wallraff, A.: Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)

    ADS  Google Scholar 

  54. For a transmon qutrit, the \(|g\rangle \leftrightarrow |f \rangle \) transition is much weaker than those of the \(|g\rangle \leftrightarrow |e\rangle \) and \(|e\rangle \leftrightarrow |f\rangle \) transitions. Thus, we have \(\gamma _{fg}^{-1}>>\gamma _{eg}^{-1},\gamma _{fe}^{-1}\)

  55. Peterer, M.J., Bader, S.J., Jin, X., Yan, F., Kamal, A., Gudmundsen, T.J., Leek, P.J., Orlando, T.P., Oliver, W.D., Gustavsson, S.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys, Rev. Lett. 114, 010501 (2015)

    ADS  Google Scholar 

  56. Fitzpatrick, M., Sundaresan, N.M., Li, A.C.Y., Koch, J., Houck, A.A.: Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X 7, 011016 (2017)

    Google Scholar 

  57. Bosman, S.J., Gely, M.F., Singh, V., Bothner, D., Castellanos-Gomez, A., Steele, G.A.: Approaching ultrastrong coupling in transmon circuit QED using a high-impedance resonator. Phys. Rev. B 95, 224515 (2017)

    ADS  Google Scholar 

  58. Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009)

    ADS  Google Scholar 

  59. Gambetta, J.M., Motzoi, F., Merkel, S.T., Wilhelm, F.K.: Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011)

    ADS  Google Scholar 

  60. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Google Scholar 

  61. Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Goppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511 (2009)

    ADS  Google Scholar 

  62. Jeffrey, E., Sank, D., Mutus, J.Y., White, T.C., Kelly, J., Barends, R., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Megrant, A., O’Malley, P.J.J., Neill, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014)

    ADS  Google Scholar 

  63. Heinsoo, J., Andersen, C.K., Remm, A., Krinner, S., Walter, T., Salathé, Y., Gasparinetti, S., Besse, J.C., Potočnik, A., Wallraff, A., Eichler, C.: Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018)

    ADS  Google Scholar 

  64. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    ADS  Google Scholar 

  65. Calusine, G., Melville, A., Woods, W., Das, R., Stull, C., Bolkhovsky, V., Braje, D., Hover, D., Kim, D.K., Miloshi, X., Rosenberg, D., Sevi, A., Yoder, J.L., Dauler, E., Oliver, W.D.: Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl. Phys. Lett. 112, 062601 (2018)

    ADS  Google Scholar 

  66. Woods, W., Calusine, G., Melville, A., Sevi, A., Golden, E., Kim, D.K., Rosenberg, D., Yoder, J.L., Oliver, W.D.: Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl. 12, 014012 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Key-Area Research and Development Program of Guangdong province (2018B030326001), the National Natural Science Foundation of China (NSFC) (11074062, 11374083, 11774076, 11890704, 61521001), the Jiangxi Natural Science Foundation (20192ACBL20051), and the NKRDP of China (2016YFA0301802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, T., Yu, Y. et al. Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Inf Process 19, 218 (2020). https://doi.org/10.1007/s11128-020-02715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02715-4

Keywords

Navigation