Skip to main content

Advertisement

Log in

Bardoxolone Methyl Ameliorates Hyperglycemia Induced Mitochondrial Dysfunction by Activating the keap1-Nrf2-ARE Pathway in Experimental Diabetic Neuropathy

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bardoxolone methyl (Bard), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator regulates multiple oxidative and inflammatory diseases. However, the role of Bard in painful diabetic neuropathy (DN) remains unknown. Bard administration at two dose levels (15 & 30 mg/kg/day) to STZ (55 mg/kg, i.p) induced diabetic rats for last two weeks of eight week study significantly improved motor nerve conduction velocity (61.84 ± 1.9 vs. 38.57 ± 1.08 m/s), sensory nerve conduction velocity (66.86 ± 5.1 vs. 39.43 ± 3.3 m/s), nerve blood flow (86.28 ± 6.4 vs. 56.56 ± 1.62 PU), and intraepidermal nerve fiber density. Additionally, Bard treatment attenuated thermal and mechanical hyperalgesia in diabetic rats. Further molecular investigation on dorsal root ganglions (DRG) tissue isolated from L4-L6 regions of diabetic rats and High glucose (HG) exposed PC12 cells displayed decreased expression and transcriptional activity of Nrf2 which might have resulted in depleted antioxidant enzymes and mitochondrial chaperones. Bard treatment significantly reversed these effects in diabetic rats and also in HG exposed PC12 cells. Moreover, mitochondrial complex activities were diminished in DRG mitochondrial fractions of diabetic rats and mitochondrial isolates of HG exposed PC12 cells and Bard treatment significantly reversed these effects. Furthermore, Bard treatment significantly impeded the impact of hyperglycemic insults on mitochondrial membrane potential, ROS production and mitochondrial oxygen consumption rate (OCR) (Basal respiration, Maximal respiration, ATP production and spare respiratory capacity) in PC12 cells. Collectively our data suggests that Bard treatment to STZ induced diabetic rats robustly reduces DN which may be due to its effect on Keap1-Nrf2-ARE pathway and have contributed to improvement in mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad A, Hussain A, Baig MAR, Arain SA (2019) Diabetes mellitus; prevalence of undiagnosed diabetes mellitus in patients of acute myocardial infraction. Professional Med 26(2)

  2. Bruschi LKM, da Rocha DA, Gesteira Filho EL, Barboza NMP, Frisanco PAB, Callegaro RM, de Sá LBPC, Arbex AK (2017) Diabetes mellitus and diabetic peripheral neuropathy. Open J Endocr Metab Dis 7(1):12–21

    CAS  Google Scholar 

  3. Amin DAeS (2016) Knowledge and practices of type II diabetic patients’ regarding diabetic foot self-care and their foot disorders. ZNJ 12 (1):18–35

  4. Lindsay TJ, Rodgers BC, Savath V, Hettinger KD (2010) Treating diabetic peripheral neuropathic pain. Am Fam Physician 82(2):151–158

    PubMed  Google Scholar 

  5. Kalvala AK, Yerra VG, Kumar A (2020) LONP1 induction by SRT1720 attenuates mitochondrial dysfunction against high glucose induced neurotoxicity in PC12 cells. Toxicol in Vitro 62:104695

    PubMed  Google Scholar 

  6. Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: A series of unfortunate metabolic events. Curr Diab Rep 15(11):89

    PubMed  Google Scholar 

  7. Russel JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16(13):1738–1748

    Google Scholar 

  8. Gureev AP, Shaforostova EA, Popov VN (2019) Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet 10:435

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim S-K, Chen Y, Park J, Cho GJ et al (2015) Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol-Gastr L 309(1):G21–G29

    CAS  Google Scholar 

  10. Athale J, Ulrich A, MacGarvey NC, Bartz RR, Welty-Wolf KE, Suliman HB, Piantadosi CA (2012) Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med 53(8):1584–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadıoğlu E, Tekşen Y, Koçak C, Koçak FE (2019) Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J trauma Emerg S:1-10

  12. Pergola PE, Krauth M, Huff JW, Ferguson DA, Ruiz S, Meyer CJ, Warnock DG (2011) Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b–4 CKD. Am J Nephrol 33(5):469–476

    CAS  PubMed  Google Scholar 

  13. Naidu SD, Dinkova-Kostova AT (2017) Regulation of the mammalian heat shock factor 1. FEBS J 284(11):1606–1627

    Google Scholar 

  14. Paul S, Ghosh S, Mandal S, Sau S, Pal M (2018) NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem 293(50):19303–19316

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcus JM, Andrabi SA (2018) SIRT3 regulation under cellular stress: Making sense of the ups and downs. Front Neurosci 12:799

    PubMed  PubMed Central  Google Scholar 

  16. Satterstrom FK, Swindell WR, Laurent G, Vyas S, Bulyk ML, Haigis MC (2015) Nuclear respiratory factor 2 induces SIRT 3 expression. Aging Cell 14(5):818–825

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalvala AK, Khan I, Gundu C, Kumar A (2019) An overview on ATP dependent and independent proteases including an anterograde to retrograde control on mitochondrial function; focus on diabetes and diabetic complications. Curr Pharm Des 25(23):2584–2594

    CAS  PubMed  Google Scholar 

  18. Bota DA, Davies KJ (2016) Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 100:188–198

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yerra VG, Kalvala AK, Kumar A (2017) Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J Nutr Biochem 47:41–52

    CAS  PubMed  Google Scholar 

  20. Liu M, Reddy NM, Higbee EM, Potteti HR, Noel S, Racusen L, Kensler TW, Sporn MB et al (2014) The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia–reperfusion injury in mice. Kidney Int 85(1):134–141

    CAS  PubMed  Google Scholar 

  21. Pergola PE, Krauth M, Huff JW, Ferguson DA, Ruiz S, Meyer CJ, Warnock DG (2011) Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b–4 CKD. Am J Nephrol 33(5):469–476

    CAS  PubMed  Google Scholar 

  22. De Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M et al (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369(26):2492–2503

    PubMed  PubMed Central  Google Scholar 

  23. Chin MP, Bakris GL, Block GA, Chertow GM, Goldsberry A, Inker LA, Heerspink HJ, O’Grady M et al (2018) Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: Post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am J Nephrol 47(1):40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chin MP, Reisman SA, Bakris GL, O'grady M, Linde PG, McCullough PA, Packham D, Vaziri ND et al (2014) Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Am J Nephrol 39(6):499–508

    CAS  PubMed  Google Scholar 

  25. Thimmulappa RK, Fuchs RJ, Malhotra D, Scollick C, Traore K, Bream JH, Trush MA, Liby KT et al (2007) Preclinical evaluation of targeting the Nrf2 pathway by triterpenoids (CDDO-Im and CDDO-me) for protection from LPS-induced inflammatory response and reactive oxygen species in human peripheral blood mononuclear cells and neutrophils. Antioxid Redox Sign 9(11):1963–1970

    CAS  Google Scholar 

  26. Kocak C, Kocak FE, Akcilar R, Bayat Z, Aras B, Metineren MH, Yucel M, Simsek H (2016) Effects of captopril, telmisartan and bardoxolone methyl (CDDO-me) in ischemia-reperfusion-induced acute kidney injury in rats: An experimental comparative study. Clin Exp Pharmacol Physiol 43(2):230–241

    CAS  PubMed  Google Scholar 

  27. Yerra VG, Kumar A (2017) Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: Effects on mitochondrial biogenesis, autophagy and neuroinflammation. Mol Nerobiol 54(3):2301–2312

    CAS  Google Scholar 

  28. Rosenblum BR, Bonner RF, Oldfield EH (1987) Intraoperative measurement of cortical blood flow adjacent to cerebral AVM using laser Doppler velocimetry. J Neurosurg 66(3):396–399

    CAS  PubMed  Google Scholar 

  29. Ma Z, Li Y, Zhang YP, Shields LB, Xie Q, Yan G, Liu W, Chen G et al (2015) Thermal nociception using a modified Hargreaves method in primates and humans. Funct Neurol 30(4):229–236

    PubMed  Google Scholar 

  30. Kumar A, Kaundal RK, Iyer S, Sharma SS (2007) Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life Sci 80(13):1236–1244

    CAS  PubMed  Google Scholar 

  31. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A (2016) Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol 36(6):883–892

    CAS  PubMed  Google Scholar 

  32. Areti A, Komirishetty P, Akuthota M, Malik RA, Kumar A (2017) Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J Pineal Res 62(3):e12393

    Google Scholar 

  33. Yerra VG, Kalvala AK, Sherkhane B, Areti A, Kumar A (2018) Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology 131:256–270

    CAS  PubMed  Google Scholar 

  34. Lips K, Pfeil U, Kummer W (2002) Coexpression of α9 and α10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience 115(1):1–5

    CAS  PubMed  Google Scholar 

  35. Bachewal P, Gundu C, Yerra VG, Kalvala AK, Areti A, Kumar A (2018) Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. Biofactors 44(2):109–122

    CAS  PubMed  Google Scholar 

  36. Gunjan S, Sharma T, Yadav K, Chauhan BS, Singh SK, Siddiqi MI, Tripathi R (2018) Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of plasmodium. Front Cell Infect Microbiol 8:256

    PubMed  PubMed Central  Google Scholar 

  37. Resham K, Sharma SS (2019) Pharmacologic inhibition of porcupine, disheveled, and β-catenin in Wnt signaling pathway ameliorates diabetic peripheral neuropathy in rats. J Pain 20(11):1338–1352

    CAS  PubMed  Google Scholar 

  38. Thatikonda S, Pooladanda V, Sigalapalli DK, Godugu C (2020) Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death Dis 11(1):1–17

    Google Scholar 

  39. Arruri V, Komirishetty P, Areti A, Dungavath SKN, Kumar A (2017) Nrf2 and NF-κB modulation by Plumbagin attenuates functional, behavioural and biochemical deficits in rat model of neuropathic pain. Pharmacol Rep 69(4):625–632

    CAS  PubMed  Google Scholar 

  40. Dobrowsky RT (2016) Targeting the diabetic chaperome to improve peripheral neuropathy. Curr Diab Rep 16(8):71

    PubMed  PubMed Central  Google Scholar 

  41. Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: Effects on NF-κB and Nrf2 cascades. J Pineal Res 50(2):124–131

    CAS  PubMed  Google Scholar 

  42. Liu Y-W, Cheng Y-Q, Liu X-L, Hao Y-C, Li Y, Zhu X, Zhang F, Yin X-X (2017) Mangiferin upregulates glyoxalase 1 through activation of Nrf2/ARE signaling in central neurons cultured with high glucose. Mol Neurobiol 54(6):4060–4070

    CAS  PubMed  Google Scholar 

  43. Jiménez-Osorio AS, Picazo A, González-Reyes S, Barrera-Oviedo D, Rodríguez-Arellano ME, Pedraza-Chaverri J (2014) Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci 15(11):20290–20305

    PubMed  PubMed Central  Google Scholar 

  44. Wu J, Liu X, Fan J, Chen W, Wang J, Zeng Y, Feng X, Yu X et al (2014) Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway. Toxicology 318:22–31

    CAS  PubMed  Google Scholar 

  45. Dinh CH, Szabo A, Yu Y, Camer D, Wang H, Huang X-F (2015) Bardoxolone methyl prevents mesenteric fat deposition and inflammation in high-fat diet mice. Sci World J 2015:1–15

    Google Scholar 

  46. Wang Y-Y, Yang Y-X, Zhe H, He Z-X, Zhou S-F (2014) Bardoxolone methyl (CDDO-me) as a therapeutic agent: An update on its pharmacokinetic and pharmacodynamic properties. Drug Des Dev Ther 8:2075

    CAS  Google Scholar 

  47. Matzinger M, Fischhuber K, Heiss EH (2018) Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 36(6):1738–1767

    CAS  PubMed  Google Scholar 

  48. Verma P, Pfister JA, Mallick S, D'Mello SR (2014) HSF1 protects neurons through a novel trimerization-and HSP-independent mechanism. J Neurosci 34(5):1599–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh SS, Sullivan KA, Wilkinson JE, Backus C, Hayes JM, Sakowski SA, Feldman EL (2012) Neurodegeneration and early lethality in superoxide dismutase 2-deficient mice: A comprehensive analysis of the central and peripheral nervous systems. Neuroscience 212:201–213

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Negi G, Nakkina V, Kamble P, Sharma SS (2015) Heme oxygenase-1, a novel target for the treatment of diabetic complications: Focus on diabetic peripheral neuropathy. Pharmacol Res 102:158–167

    CAS  PubMed  Google Scholar 

  51. Stringer JL, Gaikwad A, Gonzales BN, Long DJ Jr, Marks LM, Jaiswal AK (2004) Presence and induction of the enzyme NAD (P) H: Quinone oxidoreductase 1 in the central nervous system. J Comp Neurol 471(3):289–297

    CAS  PubMed  Google Scholar 

  52. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 48(2):91–104

    CAS  Google Scholar 

  53. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D (2016) Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife 5:e18638

  55. Pourhamidi K, Skärstrand H, Dahlin LB, Rolandsson O (2014) HSP27 concentrations are lower in patients with type 1 diabetes and correlate with large nerve fiber dysfunction. Diabetes Care 37(3):e49–e50

    CAS  PubMed  Google Scholar 

  56. Pourhamidi K, Dahlin LB, Boman K, Rolandsson O (2011) Heat shock protein 27 is associated with better nerve function and fewer signs of neuropathy. Diabetologia 54(12):3143–3149

    CAS  PubMed  Google Scholar 

  57. Nascimento DSM, Potes CS, Soares ML, Ferreira AC, Malcangio M, Castro-Lopes JM, Neto FLM (2018) Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol Neurobiol 55(5):3959–3975

    CAS  PubMed  Google Scholar 

  58. Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A, Riccio M, Carnevale G, De Biasi S et al (2014) Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion 18:76–81

    CAS  PubMed  Google Scholar 

  59. Hannah-Shmouni F, MacNeil L, Brady L, Nilsson MI, Tarnopolsky M (2019) Expanding the clinical spectrum of LONP1-related mitochondrial cytopathy. Front Neurol 10

  60. Lee SR, Han J (2017) Mitochondrial nucleoid: shield and switch of the mitochondrial genome Oxidative med cell longev:2017

  61. Yamamoto H, Morino K, Mengistu L, Ishibashi T, Kiriyama K, Ikami T, Maegawa H (2016) Amla enhances mitochondrial spare respiratory capacity by increasing mitochondrial biogenesis and antioxidant systems in a murine skeletal muscle cell line Oxid Med Cell Longev:2016

Download references

Acknowledgements

Authors would like to acknowledge the financial support provided by the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India for carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Anil Kumar Kalvala (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Telangana, India - 500,037), Performed studies, evaluated data, prepared figures and wrote manuscript; Dr. Rahul Kumar (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Telangana, India - 500,037), Performed studies, evaluated data and reviewed manuscript; Ms. Bhoomika (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Telangana, India - 500,037), Performed studies, evaluated data and reviewed manuscript; Ms. Chayanika (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Telangana, India - 500,037), Performed studies, evaluated data and reviewed manuscript; Mr. Vijay Kumar (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Telangana, India - 500,037), Performed studies, evaluated data and reviewed manuscript; Dr. Ashutosh Kumar (Department of Pharmacology and Toxicology, NIPER-HYDERABAD, Balanagar, Telangana, India - 500,037), Designed, Performed studies, evaluated data and wrote manuscript.

Corresponding author

Correspondence to Ashutosh Kumar.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalvala, A.K., Kumar, R., Sherkhane, B. et al. Bardoxolone Methyl Ameliorates Hyperglycemia Induced Mitochondrial Dysfunction by Activating the keap1-Nrf2-ARE Pathway in Experimental Diabetic Neuropathy. Mol Neurobiol 57, 3616–3631 (2020). https://doi.org/10.1007/s12035-020-01989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01989-0

Keywords

Navigation