Skip to main content
Log in

Structural, Spectroscopic, Dielectric, and Magnetic Properties of Cu-Co–Co-substituted Manganese Soft Ferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A series of Cu-Co-substituted manganese ferrites (Mn1-xCuxFe2-yCoyO4; x = 0.0–0.1, y = 0.00–0.25) were synthesized via microemulsion method. The values of structural parameters, i.e., lattice constant and crystallite size, were increased with the inclusion of Co and Cu ions. FTIR studies revealed first band at 400–500 cm−1 and second band at 561–588 cm−1. The values of dielectric parameters have been increased with the increase of Cu and Co concentrations. The magnetic parameters, i.e., saturation magnetization (Ms), coercivity (Hc), and remanence (Mr), have been investigated from M-H loops. The values of Ms and Mr were observed to increase from 5.00 to 36.02 emu/g and from 4.6 to 13.2 emu/g, respectively. The value of coercivity had been decreased from 466 to 261 Oe. The increase in saturation magnetization as well as decrease in dielectric losses proposed that synthesized nanoferrites may be potential candidates for high frequency and microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giustini, A.J., et al.: Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. 1(01n02), 17–32 (2010)

    Article  Google Scholar 

  2. Leslie-Pelecky, D.L., Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8(8), 1770–1783 (1996)

    Article  Google Scholar 

  3. Debnath, S., et al.: X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths. J. Phys. Chem. Solids. 134, 105–114 (2019)

    Article  ADS  Google Scholar 

  4. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science. 271(5251), 933 (1996)

    Article  ADS  Google Scholar 

  5. Roduner, E.: Size matters: why nanomaterials are different. Chem. Soc. Rev. 35(7), 583–592 (2006)

    Article  Google Scholar 

  6. Junaid, M., et al.: Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via micro-emulsion route. J. Magn. Magn. Mater. 419, 338–344 (2016)

    Article  ADS  Google Scholar 

  7. Aravind, G., Raghasudha, M., Ravinder, D.: Electrical transport properties of nano crystalline Li–Ni ferrites. J. Mater. 1(4), 348–356 (2015)

    Google Scholar 

  8. Yuvaraj, S., Manikandan, N., Vinitha, G.: Structural and nonlinear optical properties of nickel substituted manganese ferrite nanoparticles. Ceram. Int. 44(18), 22592–22600 (2018)

    Article  Google Scholar 

  9. Arshad, M., et al.: Structural and magnetic properties variation of manganese ferrites via Co-Ni substitution. J. Magn. Magn. Mater. 474, 98–103 (2019)

    Article  ADS  Google Scholar 

  10. Goodarz Naseri, M., et al.: Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J. Magn. Magn. Mater. 323(13), 1745–1749 (2011)

    Article  ADS  Google Scholar 

  11. Malaescu, I., et al.: Experimental investigations of the structural transformations induced by the heat treatment in manganese ferrite synthesized by ultrasonic assisted co-precipitation method. Ceram. Int. 42(15), 16744–16748 (2016)

    Article  Google Scholar 

  12. Debnath, S., Das, R.: Study of the optical properties of Zn doped Mn spinel ferrite nanocrystals shows multiple emission peaks in the visible range –a promising soft ferrite nanomaterial for deep blue LED. J. Mol. Struct. 1199, 127044 (2020)

    Article  Google Scholar 

  13. Xu, Z., et al.: Calcination induced phase transformation in MnZn ferrite powders. J. Alloys Compd. 814, 152307 (2020)

    Article  Google Scholar 

  14. Naik, P.P., et al.: Altering saturation magnetization of manganese zinc ferrite nanoparticles by doping with rare earth Nd+3 ions. Phys. B Condens. Matter. 584, 412111 (2020)

    Article  Google Scholar 

  15. Gul, M., Akhtar, K.: Synthesis and characterization of Al_doped manganese ferrite uniform particles for high-frequency applications. J. Alloys Compd. 765, 1139–1147 (2018)

    Article  Google Scholar 

  16. Desai, I., et al.: Synthesis and characterization of magnetic manganese ferrites. Mater Sci for Energy Technol. 2(2), 150–160 (2019)

  17. Lazarova, T., et al.: Tunable nanosized spinel manganese ferrites synthesized by solution combustion method. Appl. Surf. Sci. 496, 143571 (2019)

    Article  Google Scholar 

  18. Zahraei, M., et al.: Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite. J. Magn. Magn. Mater. 393, 429–436 (2015)

    Article  ADS  Google Scholar 

  19. Kaewmanee, T., et al.: Effect of oleic acid content on manganese-zinc ferrite properties. Inorg. Chem. Commun. 103, 87–92 (2019)

    Article  Google Scholar 

  20. Vignesh, V., et al.: Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids Surf. A Physicochem. Eng. Asp. 538, 668–677 (2018)

    Article  Google Scholar 

  21. Jabbar, R., Sabeeh, S.H., Hameed, A.M.: Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020)

    Article  Google Scholar 

  22. Ahmad Tokeer, Ruby Phul: Magnetic iron oxide nanoparticles as contrast agents: hydrothermal synthesis, characterization and properties. Solid State Phenom. 232, 111–114 (2015)

  23. K. Ahalya, N. Suriyanarayanan, S. Sangeetha. : Effect of pH and annealing temperatures on structural, magnetic, electrical, dielectric and adsorption properties of manganese ferrite nano particles. Mater. Sci. Semicond. Process. 27, 672–681 (2014)

  24. K. Ahalya, N. Suriyanarayanan, V. Ranjithkumar. : Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 372, 208–213 (2014)

    Article  ADS  Google Scholar 

  25. Zhang, C.F., et al.: Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter. 404(16), 2327–2331 (2009)

    Article  ADS  Google Scholar 

  26. Nejati, K., Zabihi, R.: Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 6(1), 1–6 (2012)

    Article  Google Scholar 

  27. Elmoussaoui, H., et al.: New results on magnetic properties of tin-ferrite nanoparticles. J. Supercond. Nov. Magn. 25(6), 1995–2002 (2012)

    Article  Google Scholar 

  28. Ghatage, A., et al.: X-ray, infrared and magnetic studies of chromium substituted nickel ferrite. J. Mater. Sci. Lett. 15(17), 1548–1550 (1996)

    Article  Google Scholar 

  29. Slamovich, E.B., Aksay, I.A.: Structure evolution in hydrothermally processed (< 100 C) BaTiO3 films. J. Am. Ceram. Soc. 79(1), 239–247 (1996)

    Article  Google Scholar 

  30. Li, S., et al.: FTIR and Raman spectral study of the preparation of lead zirconate (PbZrO3) by a solgel process in a non-flowing air atmosphere. J. Mater. Sci. 24(11), 3873–3877 (1989)

    Article  ADS  Google Scholar 

  31. Maxwell, J.C.: A treatise on electricity and magnetism, vol. 1. Clarendon Press, London (1873)

  32. Ali, R., et al.: Structural, magnetic and dielectric behavior of Mg 1− x Ca x Ni y Fe 2− y O 4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 40(3), 3841–3846 (2014)

    Article  Google Scholar 

  33. Koops, C.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  ADS  Google Scholar 

  34. Batoo, K.M., et al.: Influence of Al doping on electrical properties of Ni–Cd nano ferrites. Curr. Appl. Phys. 9(4), 826–832 (2009)

    Article  ADS  Google Scholar 

  35. El Hiti, M.: Dielectric behavior and ac electrical conductivity of Zn-substituted Ni ▪ Mg ferrites. J. Magn. Magn. Mater. 164(1), 187–196 (1996)

    Article  ADS  Google Scholar 

  36. Dar, M.A., et al.: Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258(14), 5342–5347 (2012)

    Article  ADS  Google Scholar 

  37. Bottger, H., Bryksin, V.: Hopping conductivity in solids. Akademie-Verlag, Berlin (1985)

    Google Scholar 

  38. M. A. Amer. : Mössbauer, infrared, and X-ray studies of Ti-doped CoCr1. 2Fe0. 8O4 ferrites. Phys. status solidi B. 237(2), 459– 471 (2003)

  39. Hossain, A.A., et al.: Effect of Li substitution on the magnetic properties of Li x Mg 0.40 Ni 0.60− 2x Fe 2+ x O 4 ferrites. Phys. B Condens. Matter. 406(8), 1506–1512 (2011)

    Article  ADS  Google Scholar 

  40. Sertkol, M., et al.: Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486(1), 325–329 (2009)

    Article  Google Scholar 

  41. Ali, R., et al.: Impacts of Ni–co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys Compd. 584, 363–368 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Azhar Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaid, M., Jacob, J., Nadeem, M. et al. Structural, Spectroscopic, Dielectric, and Magnetic Properties of Cu-Co–Co-substituted Manganese Soft Ferrites. J Supercond Nov Magn 33, 3171–3177 (2020). https://doi.org/10.1007/s10948-020-05567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05567-2

Keywords

Navigation