Skip to main content

Advertisement

Log in

Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ruddlesden–Popper (RP) layered perovskites (with general formula of (RNH3)2An−1MnX3n+1) have drawn tremendous attention due to their excellent ambient stability while retaining promising device performance. However, quasi-2D perovskites with mixed-cation often suffer from severe phase segregation and vertically aligned multiple perovskite phases (with small n phases concentrated on the bottom and large n phases on the top) are usually formed. Here, we report a strategy to suppress vertical phase segregation by using hydrochloric acid (HCl) additive. As a result, homogenous quasi-2D perovskite films with uniform phase distribution and enhanced film quality are successfully obtained via this additive strategy, which is confirmed by PL measurements. With uniform distribution of different n value phases and high-quality film, FA-based quasi-2D perovskite solar cells with an efficiency of 13.16% and excellent stability was fabricated. This strategy paves a way to develop stable and efficient quasi-2D perovskite solar cells by suppressing phase segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Best Research Cell Efficiency Chart, https://www.nrel.gov/pv/cellefficiency.html.

  2. Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu, J. Wang, X. Yang, B. Cai, Y. Zhang, J. Zhao, Reverse-graded 2D ruddlesden-popper perovskites for efficient air-stable solar cells. Adv. Energy Mater. 9(21), 1900612 (2019)

    Google Scholar 

  3. J.A. Christians, P. Schulz, J.S. Tinkham, T.H. Schloemer, S.P. Harvey, B.J.T. de Villers, A. Sellinger, J.J. Berry, J.M. Luther, Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 3(1), 68 (2018)

    CAS  Google Scholar 

  4. D.H. Cao, C.C. Stoumpos, T. Yokoyama, J.L. Logsdon, T.-B. Song, O.K. Farha, M.R. Wasielewski, J.T. Hupp, M.G. Kanatzidis, Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2(5), 982–990 (2017)

    CAS  Google Scholar 

  5. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 53(42), 11232–11235 (2014)

    CAS  Google Scholar 

  6. H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)

    CAS  Google Scholar 

  7. L.N. Quan, M. Yuan, R. Comin, O. Voznyy, E.M. Beauregard, S. Hoogland, A. Buin, A.R. Kirmani, K. Zhao, A. Amassian, D.H. Kim, E.H. Sargent, Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138(8), 2649–2655 (2016)

    CAS  Google Scholar 

  8. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015)

    CAS  Google Scholar 

  9. J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R.H. Friend, H. Yang, T.W. Lee, Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28(34), 7515–7520 (2016)

    CAS  Google Scholar 

  10. B.-E. Cohen, M. Wierzbowska, L. Etgar, High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 27(5), 1604733 (2017)

    Google Scholar 

  11. X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D.-M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, S. Liu, Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10(10), 2095–2102 (2017)

    CAS  Google Scholar 

  12. X. Zhang, R. Munir, Z. Xu, Y. Liu, H. Tsai, W. Nie, J. Li, T. Niu, D.M. Smilgies, M.G. Kanatzidis, A.D. Mohite, K. Zhao, A. Amassian, S.F. Liu, Phase transition control for high performance ruddlesden-popper perovskite solar cells. Adv. Mater. 30(21), e1707166 (2018)

    Google Scholar 

  13. X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang, J. Yan, Z. Zhang, X. Lu, H. Chen, Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018)

    Google Scholar 

  14. J. Liu, J. Leng, K. Wu, J. Zhang, S. Jin, Observation of Internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139(4), 1432–1435 (2017)

    CAS  Google Scholar 

  15. J. Qing, X.-K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, S. Bai, J.-M. Liu, H.J. Snaith, C.-S. Lee, T.C. Sum, F. Gao, Aligned and graded type-ii ruddlesden-popper perovskite films for efficient solar cells. Adv. Energy Mater. 8(21), 1800185 (2018)

    Google Scholar 

  16. G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang, X. Leng, P. Wang, M. Chen, D. Zhang, K. Zhao, S. Liu, H. Zhou, Y. Zhang, Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31(42), 1903889 (2019)

    CAS  Google Scholar 

  17. Y. Chen, S. Yu, Y. Sun, Z. Liang, Phase engineering in quasi-2D Ruddlesden-Popper perovskites. J. Phys. Chem. Lett. 9(10), 2627–2631 (2018)

    CAS  Google Scholar 

  18. J. Wang, J. Leng, J. Liu, S. He, Y. Wang, K. Wu, S. Jin, Engineered directional charge flow in mixed two-dimensional perovskites enabled by facile cation-exchange. J. Phys. Chem. C 121(39), 21281–21289 (2017)

    CAS  Google Scholar 

  19. P. Chen, M. Yan, A. Mahshid, P. Qiming, G. Chunhong, X. Long, S. Ming, X. Zuhong, H. Bin, Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy 50, 615–622 (2018)

    CAS  Google Scholar 

  20. R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao, W.L. Tan, X. Jiao, H. Chen, L. Zhang, Q. Chen, H. Zhang, W. Zou, Y. Wang, M. Yang, C. Yi, N. Wang, F. Gao, C.R. McNeill, T. Qin, J. Wang, W. Huang, Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30(51), e1804771 (2018)

    Google Scholar 

  21. Y. Lin, Y. Fang, J. Zhao, Y. Shao, S.J. Stuard, M.M. Nahid, H. Ade, Q. Wang, J.E. Shield, N. Zhou, A.M. Moran, J. Huang, Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10(1), 1008 (2019)

    Google Scholar 

  22. J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou, J.K. Keum, R. Tao, H. Xu, H. Yu, S. Haacke, Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3(12), 3061–3071 (2019)

    CAS  Google Scholar 

  23. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014)

    CAS  Google Scholar 

  24. C. Wu, K. Chen, D.Y. Guo, S.L. Wang, P.G. Li, Cations substitution tuning phase stability in hybrid perovskite single crystals by strain relaxation. RSC Adv. 8(6), 2900–2905 (2018)

    CAS  Google Scholar 

  25. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016)

    CAS  Google Scholar 

  26. N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu, G. Zheng, Q. Chen, H. Zhou, Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140(1), 459–465 (2017)

    Google Scholar 

  27. R. Hamaguchi, M. Yoshizawa-Fujita, T. Miyasaka, H. Kunugita, K. Ema, Y. Takeoka, M. Rikukawa, Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. Chem. Commun. 53(31), 4366–4369 (2017)

    CAS  Google Scholar 

  28. J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiu, G. Wu, F. Liu, P. Heremans, H. Chen, Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 151 eV. Mater. Chem. Front. 2(1), 121–128 (2018)

    CAS  Google Scholar 

  29. J.V. Milić, J.H. Im, D.J. Kubicki, A. Ummadisingu, J.Y. Seo, Y. Li, M.A. Ruiz-Preciado, M.I. Dar, S.M. Zakeeruddin, L. Emsley, M. Grätzel, Supramolecular engineering for formamidinium-based layered 2D perovskite solar cells: structural complexity and dynamics revealed by solid-state NMR spectroscopy. Adv. Energy Mater. 9(20), 1900284 (2019)

    Google Scholar 

  30. H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, S. Dai, The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8(21), 1800051 (2018)

    Google Scholar 

  31. L. Li, N. Zhou, Q. Chen, Q. Shang, Q. Zhang, X. Wang, H. Zhou, Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics. J. Phys. Chem. Lett. 9(5), 1124–1132 (2018)

    CAS  Google Scholar 

  32. C. Lan, G. Liang, S. Zhao, B. Fan, H. Lan, H. Peng, H. Sun, D. Zhang, J. Luo, P. Fan, Structural and optical properties of 2D Ruddlesden-Popper perovskite (BA)2(FA)n−1PbnI3n+1 compounds for photovoltaic applications. J. Am. Ceram. Soc. 102(7), 4152–4160 (2019)

    CAS  Google Scholar 

  33. Y. Li, J.V. Milic, A. Ummadisingu, J.Y. Seo, J.H. Im, H.S. Kim, Y. Liu, M.I. Dar, S.M. Zakeeruddin, P. Wang, A. Hagfeldt, M. Gratzel, Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells. Nano Lett. 19(1), 150–157 (2019)

    CAS  Google Scholar 

  34. H. Chen, Y. Xia, B. Wu, F. Liu, T. Niu, L. Chao, G. Xing, T. Sum, Y. Chen, W. Huang, Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy 56, 373–381 (2019)

    CAS  Google Scholar 

  35. Z. Li, N. Liu, K. Meng, Z. Liu, Y. Hu, Q. Xu, X. Wang, S. Li, L. Cheng, G. Chen, A new organic interlayer spacer for stable and efficient 2D Ruddlesden-Popper perovskite solar cells. Nano Lett 19(8), 5237–5245 (2019)

    CAS  Google Scholar 

  36. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)

    CAS  Google Scholar 

  37. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015)

    CAS  Google Scholar 

  38. L. Tian, W. Zhang, H. Yu, C. Peng, H. Mao, Y. Li, Q. Wang, Y. Huang, Post-treatment of perovskite films toward efficient solar cells via mixed solvent annealing. ACS Appl. Energy Mater. 2(7), 4954–4963 (2019)

    CAS  Google Scholar 

  39. Y. Li, K.S.K. Lo, W.W.-F. Leung, Conditioning lead iodide with dimethylsulfoxide and hydrochloric acid to control crystal growth improving performance of perovskite solar cell. Sol. Energy 157, 328–334 (2017)

    CAS  Google Scholar 

  40. G. Li, T. Zhang, Y. Zhao, Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J. Mater. Chem. A 3(39), 19674–19678 (2015)

    CAS  Google Scholar 

  41. S.T. Williams, F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, A.K.-Y. Jen, Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8(10), 10640–10654 (2014)

    CAS  Google Scholar 

  42. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3NH3PbI3-xClx” perovskite. Adv. Funct. Mater. 24(45), 7102–7108 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Sichuan Science and Technology Program (Grant 2018JY0015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijin Li or Yuelong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, H., Tian, L. et al. Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive. J Mater Sci: Mater Electron 31, 12301–12308 (2020). https://doi.org/10.1007/s10854-020-03775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03775-z

Navigation