Skip to main content

Advertisement

Log in

Construct pseudo-capacitance of a flexible 3D-entangled carbon nanofiber film as freestanding anode for dual-ion full batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We construct a remarkable freestanding and porous carbon nanofibers (FPCNFs) as anode materials in the dual-ion full battery. The dual-ion battery (DIB) based on electrolyte including the Li+ and PF6− has a high operating voltage from 3.0 to 5.0 V. The entangled and crossed carbon nanofiber film creates plenty of porous with a high specific surface area (200 m2g−1) to contribute to the pseudo-capacitance effect. The dual-ion full batteries exhibit a stable long-life property up to 500 cycles, an approximately above 4.0V high operating average discharge voltage and an energy density delivering almost 185 W h kg−1 at 0.1 A g−1. The FPCNFs can be a potential alternative toward a cost-efficient high energy density battery anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016)

    Google Scholar 

  2. J.-M.T.M. Armand, Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  3. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    CAS  Google Scholar 

  4. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai, Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48, 285–309 (2019)

    CAS  Google Scholar 

  5. S. Wu, Y. Lin, L. Xing, G. Sun, H. Zhou, K. Xu, W. Fan, L. Yu, W. Li, Stabilizing LiCoO2/graphite at high voltages with an electrolyte additive. ACS Appl Mater Interfaces 11, 17940–17951 (2019)

    CAS  Google Scholar 

  6. L. Frances, P. McCullough, T.C.A.L. Jackson, C. Clayton, V. Roy, T. Snelgrove, Freeport&Nbsp;Secondary Battery (The Dow Chemical Company, Midland, 1989)

    Google Scholar 

  7. J.A. Read, A.V. Cresce, M.H. Ervin, K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ. Sci. 7, 617–620 (2014)

    CAS  Google Scholar 

  8. X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Google Scholar 

  9. S.W. Shenggong He, H. Chen, X. Hou, Z. Shao, A new dual-ion hybrid energy storage system with energy density comparable to ternary, lithium ion batteries. J. Mater. Chem. A 8, 2571–2580 (2020)

    Google Scholar 

  10. C. Jiang, Y. Fang, J. Lang, Y. Tang, Integrated configuration design for ultrafast rechargeable dual-ion battery. Adv. Energy Mater. 7, 1700913 (2017)

    Google Scholar 

  11. J. Hao, X. Li, X. Song, Z. Guo, Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019)

    Google Scholar 

  12. H. Chen, X. Hou, F. Chen, S. Wang, B. Wu, Q. Ru, H. Qin, Y. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130, 433–440 (2018)

    CAS  Google Scholar 

  13. Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X. Zheng, F.-F. Cao, Y.-G. Guo, Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25, 120–127 (2016)

    CAS  Google Scholar 

  14. R. Chen, Y. Hu, Z. Shen, P. Pan, X. He, K. Wu, X. Zhang, Z. Cheng, Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries. J. Mater. Chem. A 5, 12914–12921 (2017)

    CAS  Google Scholar 

  15. W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng, Y. Yu, Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6, 693–698 (2014)

    CAS  Google Scholar 

  16. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv. Energy Mater. 6, 1600802 (2016)

    Google Scholar 

  17. B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017)

    Google Scholar 

  18. B.E. Conway, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1–14 (1997)

    CAS  Google Scholar 

  19. S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J. Mater. Chem. A 3, 21277–21283 (2015)

    CAS  Google Scholar 

  20. L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, Thin, flexible secondary Li-ion paper. ACS Batteries Nano 4, 5843–5848 (2010)

    CAS  Google Scholar 

  21. Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, H. Zhang, H.J. Fan, D.Y.W. Yu, C.M. Li, T. Yu, Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 5, 6559–6566 (2012)

    CAS  Google Scholar 

  22. S. Liu, Z. Wang, C. Yu, H.B. Wu, G. Wang, Q. Dong, J. Qiu, A. Eychmuller et al., A flexible TiO(2)(B)-based battery electrode with superior power rate and ultralong cycle life. Adv Mater 25, 3462–3467 (2013)

    CAS  Google Scholar 

  23. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    CAS  Google Scholar 

  24. R. J.A.S.a.J, Dah, Electrochemical Intercalation of PF 6 into Graphite. J. Electrochem. Soc 174, 892–898 (2000)

    Google Scholar 

  25. T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.-W. Meyer, S. Passerini, M. Winter, Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159, A1755–A1765 (2012)

    CAS  Google Scholar 

  26. J.A. Read, In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent. J. Phys. Chem. C 119, 8438–8446 (2015)

    CAS  Google Scholar 

  27. T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop, M. Winter, Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018)

    CAS  Google Scholar 

  28. Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif, M. AlSalhi, G. Cao, Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020)

    Google Scholar 

  29. C. Li, C. Liu, W. Wang, J. Bell, Z. Mutlu, K. Ahmed, R. Ye, M. Ozkan, C.S. Ozkan, Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning. Chem. Commun. (Camb) 52, 11398–11401 (2016)

    CAS  Google Scholar 

  30. M. Huang, K. Mi, J. Zhang, H. Liu, T. Yu, A. Yuan, Q. Kong, S. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266–274 (2017)

    CAS  Google Scholar 

  31. J. Tan, Y. Han, L. He, Y. Dong, X. Xu, D. Liu, H. Yan, Q. Yu, C. Huang, L. Mai, In situ nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. J. Mater. Chem. A 5, 23620–23627 (2017)

    CAS  Google Scholar 

  32. Z.Y. Fu, B.J. Liu, Y.Y. Liu, B. Li, H.X. Zhang, Detailed cyclization pathways identification of polyacrylonitrile and poly(acrylonitrile-co-itaconic acid) by in situ FTIR and two-dimensional correlation analysis. Ind. Eng. Chem. Res. 57, 8348–8359 (2018)

    CAS  Google Scholar 

  33. N. Elhadi, F.M. Attia, M. Hassan, R. Li, A. Batmaz, Z. Elkamel, Chen, Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. J. Mater. Chem. A 5, 24159–24167 (2017)

    Google Scholar 

  34. B.E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Springer, New York, 1999)

    Google Scholar 

  35. Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li, M. Chen, Z. Tao, Y.M. Kang, L. Mai, S.L. Chou, J. Chen, S.X. Dou, All carbon dual ion batteries. ACS Appl. Mater. Interfaces 10, 35978–35983 (2018)

    CAS  Google Scholar 

  36. J.P. John, J. Wang, Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)

    Google Scholar 

  37. F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27, 1700522 (2017)

    Google Scholar 

  38. A. Eftekhari, LiFePO4/C nanocomposites for lithium-ion batteries. J. Power Sources 343, 395–411 (2017)

    CAS  Google Scholar 

  39. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010)

    CAS  Google Scholar 

  40. L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, e1800804 (2018)

    Google Scholar 

  41. C.H. Lai, D. Ashby, M. Moz, Y. Gogotsi, L. Pilon, B. Dunn, Designing pseudocapacitance for Nb2O5/carbide-derived carbon electrodes and hybrid devices. Langmuir 33, 9407–9415 (2017)

    CAS  Google Scholar 

  42. V.A. Zheng, X. Chen, Q. Jia, B. Xiao, Y. Dunn, Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by the union project of National Natural Science Foundation of China and Guangdong Province (Grant No. U1601214), the Scientific and Technological Plan of Guangdong Province (Grant Nos. 2018B050502010, 018A050506078, 2017B090901027), the Natural Science Foundation of Guangdong Province (Grant No. 2017A030310166), the important Sci.-Tech. Plan of Guangxi and Guilin innovation-driven (Grant Nos. AA17204022, 20160204), and the Project of Blue Fire Plan (Grant Nos. CXZJHZ201708 and CXZJHZ201709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhua Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Chen, H., Qin, H. et al. Construct pseudo-capacitance of a flexible 3D-entangled carbon nanofiber film as freestanding anode for dual-ion full batteries. J Mater Sci: Mater Electron 31, 10962–10969 (2020). https://doi.org/10.1007/s10854-020-03587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03587-1

Navigation