Skip to main content
Log in

RF analysis of intercalated graphene nanoribbon-based global-level interconnects

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Intercalation doping is emerging as a prospective solution to enhance the performance of graphene nanoribbon interconnects. In this paper, the radio frequency (RF) analysis of stage-2 arsenic pentafluoride- and lithium-doped multilayer graphene nanoribbons (MLGNRs) has been carried out for global-level interconnects in terms of skin depth, surface impedance, critical ratio (CR), transfer gain, and 3-dB bandwidth. The skin-depth results demonstrate that doped MLGNRs exhibit minimum performance degradation primarily due to their higher conductivity, mean free path, and momentum relaxation time as compared to neutral MLGNR. An equivalent second-order accurate RLC model of an intercalation-doped MLGNR has been used to extract the transfer gain and 3-dB bandwidth results at 14-nm technology node for global-level interconnects. The results are further evaluated by implementing an advanced π-type equivalent single conductor derived from multi-conductor transmission line model. The doped MLGNR interconnects demonstrate 11-fold enhancement of 3-dB bandwidth as compared to copper (Cu). Also, the delay and energy-delay-product (EDP) computations in time domain for doped MLGNR interconnects exhibit nearly 10 times lesser delay and significant reduction in EDP than Cu counterparts. It is also observed that optimum values for 3-dB bandwidth and EDP parameters for intercalated MLGNRs could be achieved through width optimization. The RF and transient results validate intercalated MLGNRs as a potential candidate to replace Cu for next-generation global-level interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(5), 129–144 (2002)

    Google Scholar 

  2. Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007)

    Google Scholar 

  3. Naeemi, A., Meindl, J.D.: Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gig scale integrated systems. IEEE Trans. Electron Devices 54(1), 26–37 (2007)

    Google Scholar 

  4. Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55(6), 1328–1337 (2008)

    Google Scholar 

  5. Novoselov, K.S., Falko, V.I., Colombo, L., et al.: A roadmap for Graphene. Nature 490, 192–200 (2012)

    Google Scholar 

  6. Zhang, R., Zhao, W.S., Hu, J., Yin, W.Y.: Electrothermal characterization of multilevel Cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD). IEEE Trans. Nanotechnol. 14(2), 205–209 (2015)

    Google Scholar 

  7. Singh, A.K., Auton, G., Hill, E., Song, A.M.: Graphene based ballistic rectifiers. Carbon 84, 124–129 (2015)

    Google Scholar 

  8. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009)

    Google Scholar 

  9. Balandin, A.A., Ghosh, S., Bao, W., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Google Scholar 

  10. Naeemi, A., Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)

    Google Scholar 

  11. Reddy, K.N., Majumder, M.K., Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)

    Google Scholar 

  12. Rai, M.K., Chatterjee, A.K., Sarkar, S., et al.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)

    Google Scholar 

  13. Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)

    Google Scholar 

  14. Kumar, V.R., Majumder, M.K., Kukkam, N.R., Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)

    Google Scholar 

  15. Zhao, S., Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 56(3), 638–645 (2014)

    Google Scholar 

  16. Kaur, M., Gupta, N., Singh, A.K.: Impact of geometrical parameters on performance of MWCNT based chip interconnects. In: Proceedings of Progress In: Electromagnetics Research Symposium (PIERS), 988–993 2017

  17. Kaur, M., Gupta, N., Singh, A.K.: Performance Analysis of Multilayer Graphene Nanoribbon Based Interconnects. In: Proceedings of IEEE MTT-S International Microwave and RF Conference (IMaRC), 176–179 2017

  18. Kaur, M., Gupta, N., Singh, A.K.: Crosstalk analysis of coupled MLGNR interconnects with different types of repeater insertion. J. Microprocessors and Microsystems. 67, 18–27 (2019)

    Google Scholar 

  19. Singh, K., Raj, B.: Temperature-dependent modeling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects. J. Electron. Mater. 44(12), 4825–4835 (2015)

    Google Scholar 

  20. Rai, M.K., Garg, H., Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)

    Google Scholar 

  21. Sharma, H., Singh, K.: Thermally aware modeling and performance analysis of MLGNR as on-chip VLSI interconnect material. J. Electron. Mater. 48(8), 4902–4912 (2019)

    Google Scholar 

  22. Singh, K., Thakur, A.: Comparative analysis of mixed CNTs and MWCNTs as VLSI interconnects for deep sub-micron technology nodes. J. Electron. Mater. 48(4), 2543–2554 (2019)

    Google Scholar 

  23. Kaur, T., Rai, M.K., Khanna, R.: Effect of temperature on the performance of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019)

    Google Scholar 

  24. Das, S., Das, D., Rahaman, H.: Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects. J. Comput. Electron. 17(4), 1695–1708 (2018)

    Google Scholar 

  25. Kumar, V.R., Majumder, M.K., Alam, A., et al.: Stability and delay analysis of multi-layered GNR and multi-walled CNT interconnects. J. Comput. Electron. 14(2), 611–618 (2015)

    Google Scholar 

  26. Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016)

    Google Scholar 

  27. Bhattacharya, S., Das, S., Mukhopadhyay, A., et al.: Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J. Comput. Electron. 17(4), 1536–1548 (2018)

    Google Scholar 

  28. Bagheri, A., Ranjbar, M., Haji-Nasiri, S., et al.: Modelling and analysis of crosstalk induced noise effects in bundle SWCNT interconnects and its impact on signal stability. J. Comput. Electron. 16(3), 845–855 (2017)

    Google Scholar 

  29. Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices. 56(10), 2202–2214 (2009)

    Google Scholar 

  30. Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance modeling. IEEE Trans. Electron. Devices. 58(3), 843–852 (2011)

    Google Scholar 

  31. Sarkar, D., Xu, C., Li, H., Banerjee, K.: High-frequency behavior of graphene-based interconnects—Part I: impedance analysis and implications for inductor design. IEEE Trans. Electron Devices 58(3), 853–859 (2011)

    Google Scholar 

  32. Qian, L., Xia, Y., Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)

    Google Scholar 

  33. Kumar, P., Singh, A., Garg, A., Sharma, R.: Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of 15th UKSim Computer Modelling and Simulation, 809–814 2013

  34. Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017)

    Google Scholar 

  35. Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)

    Google Scholar 

  36. Dresselhaus, M.S., Dresselhaus, : Intercalation compounds of graphite. Adv. Phys. 51(1), 1–186 (2002)

    Google Scholar 

  37. Nishad, A.K., Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)

    Google Scholar 

  38. Kumbhare, V.R., Paltani, P.P., Venkataiah, C., Majumder, M.K.: Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area. IEEE Trans. Nanotechnol. 18, 606–610 (2019)

    Google Scholar 

  39. Singh, A.K., Auton, G., Hill, E., Song, A.: Estimation of intrinsic and extrinsic capacitances of graphene self-switching diode using conformal mapping technique. 2D Mater. 5(3), 035023 (2018)

    Google Scholar 

  40. Garg, S., Kaushal, B., Kumar, S., Kasjoo, S.R., Mahapatra, S., Singh, A.K.: Extraction of trench capacitance and reverse recovery time of InGaAs self-switching diode. IEEE Trans. on Nanotech. 18, 925–931 (2019)

    Google Scholar 

  41. Garg, A., Jain, N., Singh, A.K.: Modeling and simulation of a graphene-based three-terminal junction rectifier. J. Comput. Electron. 17(2), 562 (2018)

    Google Scholar 

  42. Singh, A.K., Kasjoo, S.R., Song, A.M.: Low-frequency noise of a ballistic rectifier. IEEE Trans. on Nanotech. 13(3), 527–531 (2014)

    Google Scholar 

  43. Garg, A., Jain, N., Kumar, S., Kasjoo, S.R., Singh, A.K.: Analysis of nonlinear characteristics of a graphene based four-terminal ballistic rectifier using a drift-diffusion model. Nanoscale Adv. 10, 1–9 (2019)

    Google Scholar 

  44. Rakheja, S., Kumar, V., Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on chip interconnects. Proc IEEE 101(7), 1740–1765 (2013)

    Google Scholar 

  45. Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001)

    Google Scholar 

  46. Reuter, G.E.H., Sondheimer, E.H.: The theory of the anomalous skin effect in metals. Proc Royal Soc. A: Math. Phys. Sci. 195, 336–364 (1948)

    MATH  Google Scholar 

  47. Benedict, L.X., Crespi, V.H., Louie, S.G., Cohen, M.L.: Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys. Rev. B Condens. Matter. 52(20), 14935–14940 (1995)

    Google Scholar 

  48. Bao, W., Wan, J., Han, X., et al.: Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5(4224), 1–9 (2014)

    Google Scholar 

  49. Kerr, A.R.: Surface impedance of superconductors and normal conductors in EM simulators. NRAO Electron Division, MMA Memo 245, 1–16 (1999)

    Google Scholar 

  50. International Technology Roadmap for Semiconductors (ITRS-2007) Reports, [Online]. Available: https://www.itrs.net/reports.html

  51. Amore, M.D., Sarto, M.S., Tamburrano, A.: Fast transient analysis of next generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Compat. 52(2), 496–503 (2010)

    Google Scholar 

  52. Dworsky, L.N.: Modern Transmission Line Theory and Applications. John Wiley & Sons, New York (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Gupta, N., Kumar, S. et al. RF analysis of intercalated graphene nanoribbon-based global-level interconnects. J Comput Electron 19, 1002–1013 (2020). https://doi.org/10.1007/s10825-020-01530-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01530-5

Keywords

Navigation