Skip to main content

Advertisement

Log in

A polymer-assisted strategy for hierarchical SnS@N-doped carbon microspheres with enhanced lithium storage performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two-dimensional metal dichalcogenides show a promising potential in energy storage due to their high specific capacity. Different from the bulk SnS prepared by conventional solvothermal method, our strategy to prepare the three-dimensional (3D) hierarchical SnS@N-doped carbon (SnS@NC) microspheres assembled from ultrathin nanosheets is realized by the polymer-assisted solvothermal method. The key factor of SnS@NC microspheres is the use of polyvinylpyrrolidone, which not only acts as surfactant to obtain the hierarchical spherical structure but also is used as heteroatom sources to realize the N-doped carbon layer coating. Compared with the bulk SnS, the enhanced electrochemical performance of SnS@NC electrode can be attributed to its 3D hierarchical structure and composition advantages, including enhanced Li+ diffusion kinetics, faster charge transfer, enough void space to accommodate the volume variation, higher electronic conductivity, and more active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  PubMed  Google Scholar 

  2. Aricò AS, Bruce P, Scrosati B, Tarascon JM (2005) Schalkwijk, W. nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    PubMed  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  4. Ren J, Ren RP, Lv YK (2018) A new anode for lithium-ion batteries based on single-walled carbon nanotubes and graphene: improved performance through a binary network design. Chem Asian J 13:1223–1227

    CAS  PubMed  Google Scholar 

  5. Lin L, Ji Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Google Scholar 

  6. Ren J, Ren RP, Lv YK (2018) A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem Eng J 353:419–424

    CAS  Google Scholar 

  7. Ren J, Yang F, Wang Z, Ren RP, Lv YK (2018) Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries. Electrochim Acta 267:133–140

    CAS  Google Scholar 

  8. Ren J, Ren RP, Lv YK (2019) WS2-decorated graphene foam@CNTs hybrid anode for enhanced lithium-ion storage. J Alloys Compd 784:697–703

    CAS  Google Scholar 

  9. Yuan YF, Ye LW, Zhang D, Chen F, Zhu M, Wang LN, Yin SM, Cai GS, Guo SY (2019) NiCo2S4 multi-shelled hollow polyhedrons as high-performance anode materials for lithium-ion batteries. Electrochim Acta 299:289–297

    CAS  Google Scholar 

  10. Ren J, Ren RP, Lv YK (2020) Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage. J Mater Sci 55:7492–7501

    CAS  Google Scholar 

  11. Yu XY, Yu L, Shen L, Song X, Chen H, Lou XW (2014) General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv Funct Mater 24:7440–7446

    CAS  Google Scholar 

  12. Ren J, Ren RP, Lv YK (2020) Hollow I-Cu2MoS4 nanocubes coupled with an ether-based electrolyte for highly reversible lithium storage. J Colloid Interface Sci 577:86–91

    CAS  PubMed  Google Scholar 

  13. Zhang YH, Wang NN, Sun CH, Lu ZX, Xue P, Tang B, Bai ZC, Dou SX (2018) 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem Eng J 332:370–376

    CAS  Google Scholar 

  14. Lei X, Yu K, Qi R, Zhu Z (2018) Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chem Eng J 347:607–617

    CAS  Google Scholar 

  15. Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S (2017) Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 9:27697–27706

    CAS  PubMed  Google Scholar 

  16. Luo B, Hu Y, Zhu X, Qiu T, Zhi L, Xiao M, Zhang H, Zou M, Cao A, Wang L (2018) Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodiumion storage with high rate capability. J Mater Chem A 6:1462–1472

    CAS  Google Scholar 

  17. Ye W, Wu F, Shi N, Zhou H, Chi Q, Chen W, Du S, Gao P, Li H, Xiong S (2020) Metal-semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium-ion batteries with ultralong cycle life. Small 6:1906607

    Google Scholar 

  18. Guo K, Xi B, Wei R, Li H, Feng J, Xiong S (2020) Hierarchical microcables constructed by CoP@C⊂carbon framework intertwined with carbon nanotubes for efficient lithium storage. Adv Energy Mater 10:1902913

    CAS  Google Scholar 

  19. Fang Y, Yu XY, Lou XW (2019) Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1:90–114

    Google Scholar 

  20. Wang S, Fang Y, Wang X, Lou XW (2019) Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed 58:7744

    Google Scholar 

  21. Cheng D, Yang L, Liu J, Hu R, Liu J, Pei K, Zhu M, Che R (2019) Nano-spatially confined and interface-controlled lithiation–delithiation in an in situ formed (SnS-SnS2-S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. J Mater Chem A 7:15320–15332

    CAS  Google Scholar 

  22. Luu THT, Duong DL, Lee TH, Pham DT, Sahoo R, Han G, Kim YM, Lee YH (2020) Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries. J Mater Chem A 8:7861–7869

    CAS  Google Scholar 

  23. Vaughn DD, Hentz OD, Chen S, Wang D, Schaak RE (2012) Formation of SnS nanoflowers for lithium ion batteries. Chem Commun 48:5608–5610

    CAS  Google Scholar 

  24. Jiang Y, Feng Y, Xi B, Kai S, Mi K, Feng J, Zhang J, Xiong S (2016) Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. J Mater Chem A 4:10719–10726

    CAS  Google Scholar 

  25. Sheng J, Yang L, Zhu YE, Li F, Zhang Y, Zhou Z (2017) Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries. J Mater Chem A 5:19745–19751

    CAS  Google Scholar 

  26. Liu J, Wen Y, van Aken PA, Maier J, Yu Y (2015) In situ reduction and coating of SnS2 nanobelts for free-standing SnS@Polypyrrole-Nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. J Mater Chem A 3:5259–5265

    CAS  Google Scholar 

  27. Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang JH, Zhao B, Liu M, Lin Z, Huang K (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 10:1757–1763

    CAS  Google Scholar 

  28. Xia C, Zhang F, Liang H, Alshareef HN (2017) Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res 10:4368–4377

    CAS  Google Scholar 

  29. Lu J, Nan C, Li L, Peng Q, Li Y (2012) Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res 6:55–64

    Google Scholar 

  30. Li X, Liu J, Ouyang L, Yuan B, Yang L, Zhu M (2018) Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries. Appl Surf Sci 436:912–918

    CAS  Google Scholar 

  31. Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470

    CAS  Google Scholar 

  32. Li S, Zheng J, Hu Z, Zuo S, Wu Z, Yan P, Pan F (2015) 3D-hierarchical SnS nanostructures: controlled synthesis, formation mechanism and lithium-ion storage performance. RSC Adv 5:72857–72862

    CAS  Google Scholar 

  33. Zhao B, Wang Z, Chen F, Yang Y, Gao Y, Chen L, Jiao Z, Cheng L, Jiang Y (2017) Three-dimensional interconnected spherical graphene framework/SnS nanocomposite for anode material with superior lithium storage performance: complete reversibility of Li2S. ACS Appl Mater Interfaces 9:1407–1415

    CAS  PubMed  Google Scholar 

  34. Liu J, Gu M, Ouyang L, Wang H, Yang L, Zhu M (2016) Sandwich-like SnS/polypyrrole ultrathin nanosheets as high-performance anode materials for li-ion batteries. ACS Appl Mater Interfaces 8:8502–8510

    CAS  PubMed  Google Scholar 

  35. Xue P, Wang N, Wang Y, Zhang Y, Liu Y, Tang B, Bai Z, Dou S (2018) Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries. Carbon 134:222–231

    CAS  Google Scholar 

  36. Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y (2015) A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv Sci 2:1500200

    Google Scholar 

  37. Guan D, Li J, Gao X, Xie Y, Yuan C (2016) Growth characteristics and influencing factors of 3D hierarchical flower-like SnS2 nanostructures and their superior lithium-ion intercalation performance. J Alloys Compd 658:190–197

    CAS  Google Scholar 

  38. Li J, Zhao X, Zhang Z (2017) Ultradispersed nanoarchitecture of SnS nanoparticles/reduced graphene oxide for enhanced sodium storage performance. J Colloid Interface Sci 498:153–160

    CAS  PubMed  Google Scholar 

  39. Zhang Y, Wang N, Lu Z, Xue P, Liu Y, Zhai Y, Tang B, Guo M, Qin L, Bai Z (2019) Hierarchical assembly and superior lithium/sodium storage properties of a flowerlike C/SnS@C nanocomposite. Electrochim Acta 296:891–900

    CAS  Google Scholar 

  40. He P, Fang Y, Yu XY, Lou XW (2017) Hierarchical nanotubes constructed by carbon-coated ultrathin SnS nanosheets for fast capacitive sodium storage. Angew Chem Int Ed 56:12202–12205

    CAS  Google Scholar 

  41. Zhou TF, Pang WK, Zhang CF, Yang JP, Chen ZX, Liu HK, Guo ZP (2014) Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 8:8323–8333

    CAS  PubMed  Google Scholar 

  42. Deng Z, Jiang H, Hu Y, Li C, Liu Y, Liu H (2018) Nanospace-confined synthesis of coconut-like SnS/C nanospheres for high-rate and stable lithium-ion batteries. AICHE J 64:1965–1974

    CAS  Google Scholar 

  43. Cai J, Li Z, Shen PK (2012) Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl Mater Interfaces 4:4093–4098

    CAS  PubMed  Google Scholar 

  44. Yu Z, Li X, Yan B, Xiong D, Yang M, Li D (2017) Rational design of flower-like tin sulfide@reduced graphene oxide for high performance sodium ion batteries. Mater Res Bull 96:516–523

    CAS  Google Scholar 

  45. Lian Q, Zhou G, Zeng X, Wu C, Wei Y, Cui C, Wei W, Chen L, Li C (2016) Carbon coated SnS/SnO2 heterostructures wrapping on CNFs as an improved performance anode for Li-ion batteries: lithiation-induced structural optimization upon cycling. ACS Appl Mater Interfaces 8:30256–30263

    CAS  PubMed  Google Scholar 

  46. Feng N, Meng R, Zu L, Feng Y, Peng C, Huang J, Liu G, Chen B, Yang J (2019) A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun 10:1372

    PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Ren J, Gao X, Zhang W, Duan H, Wang M, Shui J, Xu M (2018) Self-adaptive electrode with SWNCT bundles as elastic substrate for high-rate and long-cycle-life lithium/sodium ion batteries. Small 14:1802913

    Google Scholar 

  48. Wang Y, Gao X, Li L, Wang M, Shui J, Xu M (2020) High-capacity K-storage operational to −40 °C by using RGO as a model anode material. Nano Energy 67:104248

    Google Scholar 

  49. Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048

  50. Li S, Zheng J, Zuo S, Wu Z, Yan P, Pan F (2015) 2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries. RSC Adv 5:46941–46946

    CAS  Google Scholar 

  51. Zhao J, Wang G, Hu R, Zhu K, Cheng K, Ye K, Cao D, Fan Z (2019) Ultrasmall-sized SnS nanosheets vertically aligned on carbon microtubes for sodium-ion capacitors with high energy density. J Mater Chem A 7:4047–4054

    CAS  Google Scholar 

  52. Choi SH, Kang YC (2015) Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res 8:1595–1603

    CAS  Google Scholar 

  53. Cho E, Song K, Park MH, Nam KW, Kang YM (2016) SnS 3D flowers with superb kinetic properties for anodic use in next-generation sodium rechargeable batteries. Small 12:2510–2517

    CAS  PubMed  Google Scholar 

  54. Zhang Y, Yang J, Zhang Y, Li C, Huang W, Yan Q, Dong X (2018) Fe2O3/SnSSe hexagonal nanoplates as lithium-ion batteries anode. ACS Appl Mater Interfaces 10:12722–12730

    CAS  PubMed  Google Scholar 

  55. Zhang S, Yue L, Zhao H, Wang Z, Mi J (2017) MWCNTs wrapped flower-like SnS composite as anode material for sodium-ion battery. Mater Lett 209:212–215

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21776196, 51778397) and Key R&D projects of Shanxi Province (201803D421089), and Shanxi Province Science Foundation for Youths (RD2000002002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Peng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 817 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Li, Y., Cao, C. et al. A polymer-assisted strategy for hierarchical SnS@N-doped carbon microspheres with enhanced lithium storage performance. Ionics 26, 4921–4928 (2020). https://doi.org/10.1007/s11581-020-03660-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03660-z

Keywords

Navigation