Skip to main content
Log in

Three new iterative methods for solving inclusion problems and related problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the variational inclusion problem which consists of finding zeros of the sum of a single and multivalued mappings in real Hilbert spaces. Motivated by the viscosity approximation, projection and contraction and inertial forward–backward splitting methods, we introduce two new forward–backward splitting methods for solving this variational inclusion. We present weak and strong convergence theorems for the proposed methods under suitable conditions. Our work generalize and extend some related results in the literature. Several numerical examples illustrate the potential applicability of the methods and comparisons with related methods emphasize it further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez F, Attouch H (2001) An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Val Anal 9:3–11

    Article  MathSciNet  Google Scholar 

  • Aoyama K, Kimura Y, Takahashi W (2008) Maximal monotone operators and maximal monotone functions for equilibrium problems. J Convex Anal 15:395–409

    MathSciNet  MATH  Google Scholar 

  • Brézis H (1973) Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York

  • Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York

    Book  Google Scholar 

  • Beck A, Teboulle M (2009) Gradient-based algorithms with applications to signal recovery problems. In: Eldar Y, Palomar D (eds) Convex optimization in signal processing and communications. Cambridge university press, Cambridge

  • Bot RI, Csetnek ER (2016) An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone inclusion problems. Numer. Algor. 71:519–540

    Article  MathSciNet  Google Scholar 

  • Combettes PL (2004) Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53:475–504

    Article  MathSciNet  Google Scholar 

  • Cegielski A (2012) Iterative methods for fixed point problems in Hilbert spaces, vol 2057. Lecture notes in mathematics. Springer, Berlin

  • Censor Y, Elfving T (1994) A multiprojection algorithm using Bregman projection in a product space. Num. Alg. 8:221–239

    Article  MathSciNet  Google Scholar 

  • Censor Y, Bortfeld T, Martin B, Trofimov A (2006) A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Bio. 51:2353–2365

    Article  Google Scholar 

  • Cholamjiak W, Cholamjiak P, Suantai S (2018) An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces. J Fixed Point Theory Appl 20:42

    Article  MathSciNet  Google Scholar 

  • Combettes PL, Wajs VR (2005) Signal recovery by proximal forward–backward splitting. Multiscale Model Simul 4:1168–1200

    Article  MathSciNet  Google Scholar 

  • Davis D, Yin W (2017) A three-operator splitting scheme and its optimization applications. Set Val Var Anal 25:829–858

    Article  MathSciNet  Google Scholar 

  • Dong QL, Jiang D, Cholamjiak P, Shehu Y (2017) A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions. J Fixed Point Theory Appl 19:3097–3118

    Article  MathSciNet  Google Scholar 

  • Dong QL, Cho YJ, Zhong LL, Rassias ThM (2018) Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70:687–704. https://doi.org/10.1007/s11784-018-0526-5

    Article  MathSciNet  MATH  Google Scholar 

  • Douglas J, Rachford HH (1956) On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82:421–439

    Article  MathSciNet  Google Scholar 

  • Eckstein J, Bertsekas DP (1992) On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Prog 55:293–318

    Article  MathSciNet  Google Scholar 

  • Gibali G, Thong DV (2018) Tseng type methods for solving inclusion problems and its applications. Calcolo 55:49

    Article  MathSciNet  Google Scholar 

  • Khan SA, S Suantai S, Cholamjiak W (2008) Shrinking projection methods involving inertial forward-backward splitting methods for inclusion problems. RACSAM. https://doi.org/10.1007/s13398-018-0504-1

  • Lorenz DA, Pock T (2015) An inertial forward–backward algorithm for monotone inclusions. J Math Imaging Vis 51:311–325

    Article  MathSciNet  Google Scholar 

  • Lions PL, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal 16:964–979

    Article  MathSciNet  Google Scholar 

  • Maingé F (2008) A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim 47:1499–1515

    Article  MathSciNet  Google Scholar 

  • Moudafi A (2000) Viscosity approximation methods for fixed-points problems. J Math Anal Appl 241:46–55

    Article  MathSciNet  Google Scholar 

  • Opial Z (1967) Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull AMS 73:591–597

    Article  MathSciNet  Google Scholar 

  • Peaceman DH, Rachford HH (1955) The numerical solution of parabolic and elliptic differentials. J Soc Ind Appl Math 3:28–41

    Article  MathSciNet  Google Scholar 

  • Raguet H, Fadili J, Peyr G (2013) A generalized forward–backward splitting. SIAM J Imaging Sci 6:1199–1226

    Article  MathSciNet  Google Scholar 

  • Suantai S, Pholasa N, Cholamjiak P (2018) The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J Ind Manag Optim. https://doi.org/10.3934/jimo.2018023

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi S, Takahashi W, Toyoda M (2010) Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J Optim Theory Appl 147:27–41

    Article  MathSciNet  Google Scholar 

  • Takahashi W (2000) Nonlinear functional analysis-fixed point theory and its applications. Yokohama Publishers, Yokohama

    MATH  Google Scholar 

  • Thong DV, Vinh NT (2019) Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. Optimization 68:1037–1072

    Article  MathSciNet  Google Scholar 

  • Tseng P (2000) A modified forward–backward splitting method for maximal monotone mappings. SIAM J Control Optim 38:431–446

    Article  MathSciNet  Google Scholar 

  • Verma M, Sahu DR, Shukla KK (2018) VAGA: a novel viscosity-based accelerated gradient algorithm. Appl. Intell. 48:2613–2627

    Article  Google Scholar 

  • Xu HK (2002) Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66:240–256

    Article  MathSciNet  Google Scholar 

  • Zeidler E (1990) Nonlinear functional analysis and its applications II/B. Springer, New York

    Book  Google Scholar 

  • Zhang C, Wang Y (2018) Proximal algorithm for solving monotone variational inclusion. Optimization. https://doi.org/10.1080/02331934.2018.1455832

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Additional information

Communicated by José R Fernández.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibali, A., Thong, D.V. & Vinh, N.T. Three new iterative methods for solving inclusion problems and related problems. Comp. Appl. Math. 39, 187 (2020). https://doi.org/10.1007/s40314-020-01215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01215-6

Keywords

Mathematics Subject Classification

Navigation