Skip to main content
Log in

Reduction of Images to the Form Typical for Measuring the Distribution of Object Transparency with Subjective Information about Its Sparsity in a Given Basis

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Experiments on the study of light-sensitive objects or rapidly evolving objects often employ a small number of photons that interact with the object. This leads to poor quality of the reconstructed image of the object. In this situation, mathematical techniques for processing measurements must not only provide a minimum error, but also use all information available to the researcher about the object to further reduce this error. The source of information used together with the measurement results to construct an estimate of the distribution of the optical characteristics of the object can be a researcher’s ideas about the possible form of the distribution of the optical characteristics of the object and about possible noise. A version of the mathematical method of measuring reduction is considered. It allows one to use such information, which is simulated by the mathematical formalism of subjective modeling, and to verify the agreement of subjective information proposed by the researcher with measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. V. Belinskii, and D. N. Klyshko, J. Exp. Theor. Phys. 78, 259 (1994).

    ADS  Google Scholar 

  2. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995). https://doi.org/10.1103/physreva.52.r3429

    Article  ADS  Google Scholar 

  3. P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, Laser Photon. Rev. 12, 1700143 (2017). https://doi.org/10.1002/lpor.201700143

  4. A. S. Chirkin, JETP Lett. 102, 404 (2015). https://doi.org/10.7868/S0370274X15180162

    Article  ADS  Google Scholar 

  5. D. A. Balakin, A. V. Belinsky, and A. S. Chirkin, J. Russ. Laser Res. 38, 164 (2017). https://doi.org/10.1007/s10946-017-9630-z

    Article  Google Scholar 

  6. D. A. Balakin, A. V. Belinskii, and A. S. Chirkin, J. Exp. Theor. Phys. 125, 210 (2017). https://doi.org/10.7868/S0044451017080041

    Article  ADS  Google Scholar 

  7. D. A. Balakin, A. V. Belinsky, and A. S. Chirkin, Quantum Inf. Process 18 (3), 80 (2019). https://doi.org/10.1007/s11128-019-2193-x

    Article  ADS  Google Scholar 

  8. Sh. Han, H. Yu, X. Shen, et al., Appl. Sci. 8, 1379 (2018). https://doi.org/10.3390/app8081379

    Article  Google Scholar 

  9. P. A. Morris, R. S. Aspden, J. E. C. Bell, et al., Nat. Commun. 6, 5913 (2015). https://doi.org/10.1038/ncomms6913

    Article  ADS  Google Scholar 

  10. P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, Phys. Rev. A 84, 061804 (2011). https://doi.org/10.1103/physreva.84.061804

  11. W. Gong and Sh. Han, Phys. Lett. A 376, 1519 (2012). https://doi.org/10.1016/j.physleta.2012.03.027

    Article  ADS  Google Scholar 

  12. W. Gong and Sh. Han, Sci. Rep. 5, 9280 (2015). https://doi.org/10.1038/srep09280

    Article  ADS  Google Scholar 

  13. J. Li, W. Gao, J. Qian, et al., Sensors 19, 192 (2019). https://doi.org/10.3390/s19010192

    Article  Google Scholar 

  14. X. Shi, X. Huang, S. Nan, et al., Laser Phys. Lett. 15, 045204 (2018). https://doi.org/10.1088/1612-202x/aaa5f6

  15. O. Katz, Y. Bromberg, and Y. Silberberg, Appl. Phys. Lett. 95, 131110 (2009). https://doi.org/10.1063/1.3238296

  16. H. Wang, Sh. Han, and M. I. Kolobov, Opt. Express 20, 23235 (2012). https://doi.org/10.1364/oe.20.023235

    Article  ADS  Google Scholar 

  17. J. Du, W. Gong, and S. Han, Opt. Lett. 37, 1067 (2012). https://doi.org/10.1364/ol.37.001067

    Article  ADS  Google Scholar 

  18. Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013).

    Article  MathSciNet  Google Scholar 

  19. Yu. P. Pyt’ev, Methods of Mathematical Modeling of Measuring and Computing Systems, 3rd ed. (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  20. D. A. Balakin and Yu. P. Pyt’ev, Mosc. Univ. Phys. Bull. 72, 101 (2017).

    Article  ADS  Google Scholar 

  21. D. A. Balakin and Yu. P. Pyt’ev, Uch. Zap. Fiz. Fak. Mosk. Univ., No. 5, 1850301 (2018).

  22. L. Mertens, M. Sonnleitner, J. Leach, et al., Sci. Rep. 7, 42164 (2017). https://doi.org/10.1038/srep42164

    Article  ADS  Google Scholar 

  23. Yu. P. Pyt’ev, Probability, Opportunity and Subjective Modeling in Scientific Research. Mathematical, Empirical Foundations, Applications (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  24. Yu. P. Pyt’ev, O. V. Falomkina, S. A. Shishkin, and A. I. Chulichkov, Mashin. Obuch. Anal. Dannykh 4 (2), 108 (2018). https://doi.org/10.21469/22233792.4.2.04

    Article  Google Scholar 

  25. D. A. Balakin and Yu. P. Pyt’ev, Mat. Model. 30 (12), 84 (2018).

    MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to my supervisor Professor Yu. P. Pyt’ev and Professor A. V. Belinskii.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-07-00424 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balakin.

Additional information

Translated by I. P. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakin, D.A. Reduction of Images to the Form Typical for Measuring the Distribution of Object Transparency with Subjective Information about Its Sparsity in a Given Basis. Moscow Univ. Phys. 75, 26–34 (2020). https://doi.org/10.3103/S0027134920010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134920010038

Keywords:

Navigation