Skip to main content

Advertisement

Log in

NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium-ion batteries have received a surge of interests for the alternatives to lithium-ion batteries due to their abundant reserves and low cost. The quest of reliable and high-performance cathode materials is crucial to future Na storage technologies. Herein, poly(3,4-ethylenedioxythiophene) (PEDOT) was successfully introduced to NaV3O8 via in situ oxidation polymerization, which can effectively enhance electron conductivity and ionic diffusion of NaV3O8 material. As a result, these NaV3O8@PEDOT composites exhibit a significantly improved electrochemical performance including cycle stability and rate performance. In particular, NaV3O8@20 wt% PEDOT composite demonstrates better dispersibility and lower charge transfer resistance compared with bare NaV3O8, which delivers the first discharge capacity of 142 mAh·g−1 and holds about 128.7 mAh·g−1 after 300 cycles at a current density of 120 mA·g−1. Even at a high current density of 300 mA·g−1, a high reversible capacity of 99.6 mAh·g−1 is revealed. All these consequences suggest that NaV3O8@20 wt% PEDOT composite may be a promising candidate to serve as a high-rate and long-lifespan cathode material for sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618.

    CAS  Google Scholar 

  2. Song T, Yao W, Kiadkhunthod P, Zheng Y, Wu N, Zhou X, Tunmee S, Sattayaporn S, Tang Y. A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew Chem Int Ed. 2020;59(2):740.

    CAS  Google Scholar 

  3. Lan Y, Yao W, He X, Song T, Tang Y. Mixed polyanionic compounds as positive electrodes in low-cost electrochemical energy storage. Angew Chem Int Ed. 2020. https://doi.org/10.1002/anie.201915666.

    Article  Google Scholar 

  4. Hong W, Zhang Y, Yang L, Tian Y, Ge P, Hu J, Wei W, Zou G, Hou H, Ji X. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy. 2019;65:104038.

    CAS  Google Scholar 

  5. Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.

    CAS  Google Scholar 

  6. Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS. A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for electrode material of supercapacitor. J Mater Chem A. 2014;2(25):9828.

    CAS  Google Scholar 

  7. Liu GQ, Li Y, Du YL, Wen L. Synthesis and properties of Na0.8Ni0.4Mn0.6O2 oxide used as cathode material for sodium ion batteries. Rare Met. 2017;36(12):977.

    CAS  Google Scholar 

  8. Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.

    CAS  Google Scholar 

  9. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  10. Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

    CAS  Google Scholar 

  11. Pu X, Wang H, Zhao D, Yang H, Ai X, Cao S, Chen Z, Cao Y. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 2019;15(32):1805427.

    Google Scholar 

  12. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater. 2017;2(7):873.

    Google Scholar 

  13. Zhu Y, Li J, Yun X, Zhao G, Ge P, Zou G, Liu Y, Hou H, Ji X. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020;12(1):16.

    Google Scholar 

  14. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater. 2015;27(47):7861.

    CAS  Google Scholar 

  15. Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Ji X. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080.

    Google Scholar 

  16. Ge P, Li S, Shuai H, Xu W, Tian Y, Yang L, Zou G, Hou H, Ji X. Ultrafast sodium full batteries derived from X–Fe (X = Co, Ni, Mn) prussian blue analogs. Adv Mater. 2019;31(3):1806092.

    Google Scholar 

  17. Wang L, Wang Z, Xie L, Zhu L, Cao X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(18):16619.

    CAS  Google Scholar 

  18. Zhang Y, Foster CW, Banks CE, Shao L, Hou H, Zou G, Chen J, Huang Z, Ji X. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv Mater. 2016;28(42):9391.

    CAS  Google Scholar 

  19. Ge P, Zhang C, Hou H, Wu B, Zhou L, Li S, Wu T, Hu J, Mai L, Ji X. Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: the influences of electronic structure, morphology, electrochemical property. Nano Energy. 2018;48:617.

    CAS  Google Scholar 

  20. Ge P, Hou H, Li S, Yang L, Ji X. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv Funct Mater. 2018;28(30):1801765.

    Google Scholar 

  21. Gao X, Jiang F, Yang Y, Zhang Y, Zou G, Hou H, Hu Y, Sun W, Ji X. Chalcopyrite-derived NaxMO2 (M = Cu, Fe, Mn) cathode: tuning impurities for self-doping. ACS Appl Mater Interfaces. 2020;12(2):2432.

    CAS  Google Scholar 

  22. Yabuuchi N, Ikeuchi I, Kubota K, Komaba S. Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. ACS Appl Mater Interfaces. 2018;8(47):32292.

    Google Scholar 

  23. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci. 2017;10(5):1051.

    CAS  Google Scholar 

  24. Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H. Phosphate framework electrode materials for sodium ion batteries. Adv Sci. 2017;4(5):1600392.

    Google Scholar 

  25. Cao X, Sun Q, Zhu L, Xie L. Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. J Alloys Compd. 2019;791:296.

    CAS  Google Scholar 

  26. Fang Y, Liu Q, Xiao L, Rong Y, Liu Y, Chen Z, Ai X, Cao Y, Yang H, Xie J, Sun C, Zhang X, Aoun B, Xing X, Xiao X, Ren Y. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries. Chem. 2018;4(5):1167.

    CAS  Google Scholar 

  27. Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci. 2017;4(3):1600275.

    Google Scholar 

  28. Cao X, Liu J, Zhu L, Xie L. Polymer electrode materials for high-performance lithium/sodium-ion batteries: a review. Energy Technol. 2019;7(7):1800759.

    Google Scholar 

  29. Zhu L, Shen Y, Sun M, Qian J, Cao Y, Ai X, Yang H. Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem Commun. 2013;49(97):11370.

    CAS  Google Scholar 

  30. Zhu L, Liu J, Liu Z, Xie L, Cao X. Anthraquinones with ionizable sodium sulfonate groups as renewable cathode materials for sodium-ion batteries. ChemElectroChem. 2019;6(3):787.

    CAS  Google Scholar 

  31. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116(16):9438.

    CAS  Google Scholar 

  32. Novák P, Müller K, Santhanam K, Haas O. Electrochemically active polymers for rechargeable batteries. Chem Rev. 1997;97(1):207.

    Google Scholar 

  33. Zhu L, Ding G, Liu J, Liu Z, Xie L, Cao X. Graphene-wrapped poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) nanoflowers as low-cost and high-performance cathode materials for sodium-ion batteries. Int J Energy Res. 2019;43(13):7635.

    CAS  Google Scholar 

  34. Ko YN, Kang YC, Park SB. A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries. Nanoscale. 2013;5(19):8899.

    CAS  Google Scholar 

  35. Yu H, Rui X, Tan H, Chen J, Huang X, Xu C, Liu W, Yu DYW, Hng HH, Hoster HE, Yan Q. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale. 2013;5(11):4937.

    CAS  Google Scholar 

  36. Chen Z, Cao L, Chen L, Zhou H, Xie K, Kuang Y. Nanoplate-stacked baguette-like LiVO3 as a high performance cathode material for lithium-ion batteries. J Mater Chem A. 2015;3(16):8750.

    CAS  Google Scholar 

  37. Weckhuysen BM, Keller DE. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today. 2003;78(1):25.

    CAS  Google Scholar 

  38. Zhu L, Xie L, Cao X. LiV3O8/polydiphenylamine composites with significantly improved electrochemical behavior as cathode materials for rechargeable lithium batteries. ACS Appl Mater Interfaces. 2018;10(13):10909.

    CAS  Google Scholar 

  39. Zhu L, Li W, Xie L, Cao X. LiV3O8/poly(1,5-diaminoanthraquinone) composite as a high performance cathode material for rechargeable lithium batteries. Mater Lett. 2017;206:225.

    CAS  Google Scholar 

  40. Zhu L, Li W, Yu Z, Xie L, Cao X. Synthesis and electrochemical performances of LiV3O8/poly(3,4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries. Solid State Ionics. 2017;310:30.

    CAS  Google Scholar 

  41. Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y. High rate, long lifespan LiV3O8 nanorods as a cathode material for lithium-ion batteries. Small. 2017;13(18):1603148.

    Google Scholar 

  42. Song H, Luo M, Wang A. High rate and stable li-ion insertion in oxygen-deficient LiV3O8 nanosheets as a cathode material for lithium-ion battery. ACS Appl Mater Interfaces. 2017;9(3):2875.

    CAS  Google Scholar 

  43. Zhu L, Ding G, Xie L, Yang Q, Yang X, Cao X. Facile preparation of NaV3O8/polytriphenylamine composites as cathode materials towards high-performance sodium storage. Int J Energy Res. 2020;44(4):3215.

    CAS  Google Scholar 

  44. Cao L, Chen L, Huang Z, Kuang Y, Zhou H, Chen Z. NaV3O8 nanoplates as a lithium-ion battery cathode with superior rate capability and cycle stability. ChemElectroChem. 2016;3(1):122.

    CAS  Google Scholar 

  45. Tang Y, Sun D, Wang H, Huang X, Zhang H, Liu S, Liu Y. Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv. 2014;4(16):8328.

    CAS  Google Scholar 

  46. Zhu L, Li W, Xie L, Yang Q, Cao X. Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chem Eng J. 2019;372:1056.

    CAS  Google Scholar 

  47. Hu F, Xie D, Cui F, Zhang D, Song G. Synthesis and electrochemical performance of NaV3O8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries. RSC Adv. 2019;9(36):20549.

    CAS  Google Scholar 

  48. Diem N, Gim J, Mathew V, Song J, Kim S, Ahn D, Kim J. Plate-type NaV3O8 cathode by solid sate reaction for sodium-ion batteries. ECS Electrochem Lett. 2014;3(7):A69.

    Google Scholar 

  49. Rashad M, Li X, Zhang H. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8 center dot 1.69H2O nanobelts as a positive electrode. ACS Appl Mater Interfaces. 2018;10(25):21313.

    CAS  Google Scholar 

  50. Kang H, Liu Y, Shang M, Lu T, Wang Y, Jiao L. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries. Nanoscale. 2015;7(20):9261.

    CAS  Google Scholar 

  51. Meng H, Perepichka DF, Wudl F. Facile solid-state synthesis of highly conducting poly(ethylenedioxythiophene). Angew Chem Int Ed. 2003;42(6):658.

    CAS  Google Scholar 

  52. Yang H, Liu Y, Wang Z, Liu Y, Du H, Hao X. A highly oriented poly(3,4-ethylenedioxythiophene) film: facile synthesis and application for supercapacitor. J Appl Polym Sci. 2016;133(20):43418.

    Google Scholar 

  53. Jiang X, Yu Z, Zhang Y, Lai J, Li J, Gurzadyan GG, Yang X, Sun L. High-performance regular perovskite solar cells employing low-cost poly(ethylenedioxythiophene) as a hole-transporting material. Sci Rep. 2017;7:42564.

    CAS  Google Scholar 

  54. Rumbau V, Pomposo JA, Eleta A, Rodriguez J, Grande H, Mecerreyes D, Ochoteco E. First enzymatic synthesis of water-soluble conducting poly(3,4-ethylenedioxythiophene). Biomacromolecules. 2007;8(2):315.

    CAS  Google Scholar 

  55. Cao X, Yang Q, Zhu L, Xie L. NaV3O8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries. Ionics. 2018;24(3):943.

    CAS  Google Scholar 

  56. Xu J, Nie G, Zhang S, Han X, Hou J, Pu S. Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J Mater Sci. 2005;40(11):2867.

    CAS  Google Scholar 

  57. Fabregat G, Estrany F, Casas MT, Alemán C, Armelin E. Detection of dopamine using chemically synthesized multilayered hollow microspheres. J Phys Chem B. 2014;118(17):4702.

    CAS  Google Scholar 

  58. Zhan L, Song Z, Zhang J, Tang J, Zhan H, Zhou Y, Zhan C. PEDOT: cathode active material with high specific capacity in novel electrolyte system. Electrochim Acta. 2008;53(28):8319.

    CAS  Google Scholar 

  59. Yang G, Hou W, Sun Z, Yan Q. A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene) oxide into LiV3O8 in one step. J Mater Chem. 2005;15(13):1369.

    CAS  Google Scholar 

  60. Koval’chuk EP, Reshetnyak OV, Kovalyshyn YS, Blażejowski J. Structure and properties of lithium trivanadate-a potential electroactive material for a positive electrode of secondary storage. J Power Sour. 2002;107(1):61.

    Google Scholar 

  61. Wang H, Liu S, Ren Y, Wang W, Tang A. Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy Environ Sci. 2012;5(3):6173.

    CAS  Google Scholar 

  62. Li J, Wei H, Peng Y, Geng L, Zhu L, Cao X, Liu C, Pang H. A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chem Commun. 2019;55:7922.

    CAS  Google Scholar 

  63. Liu T, Zhao SX, Gou LL, Wu X, Nan CW. Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping. Rare Met. 2019;38(3):189.

    CAS  Google Scholar 

  64. Zhou HM, Zhu YH, Li J, Sun WJ, Liu ZZ. Electrochemical performance of Al2O3 pre-coated spinel LiMn2O4. Rare Met. 2019;38(2):128.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21773057, U1704142 and U1904216), the Postdoctoral Science Foundation of China (No. 2017M621833), Zhongyuan Thousand People Plan-The Zhongyuan Youth Talent Support Program (in Science and Technology) of China (No. ZYQR201810139), the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (No. 18HASTIT008) and the Fundamental Research Funds in Henan University of Technology (No. 2018RCJH01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Min Zhu or Xiao-Yu Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, GC., Zhu, LM., Yang, Q. et al. NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met. 39, 865–873 (2020). https://doi.org/10.1007/s12598-020-01452-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01452-y

Keywords

Navigation