Skip to main content

Advertisement

Log in

Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Pathogens develop resistance to antibiotics at a rate much faster than the discovery of new antimicrobial compounds. Reports of multidrug-resistant bacteria isolated from broilers, and the possibility that these strains may spread diseases amongst humans, prompted many European countries to ban the inclusion of antibiotics in feed. Probiotics added to broiler feed controlled a number of bacterial infections. A combination of Enterococcus faecium, Pediococcus acidilactici, Bacillus animalis, Lactobacillus salivarius and Lactobacillus reuteri decreased the colonisation of Campylobacter jejuni and Salmonella Enteritidis in the gastro-intestinal tract (GIT) of broilers, whereas Bacillus subtilis improved feed conversion, intestinal morphology, stimulated the immune system and inhibited the colonisation of Campylobacter jejuni, Escherichia coli and Salmonella Minnesota. Lactobacillus salivarius and Pediococcus parvulus improved weight gain, bone characteristics, intestinal morphology and immune response, and decreased the colonisation of S. Enteritidis. Lactobacillus crispatus, L. salivarius, Lactobacillus gallinarum, Lactobacillus johnsonii, Enterococcus faecalis and Bacillus amyloliquefaciens decreased the Salmonella count and led to an increase in lysozyme and T lymphocytes. Probiotics may also improve feed digestion through production of phytases, lipases, amylases and proteases or stimulate the GIT to secrete digestive enzymes. Some strains increase the nutritional value of feed by production of vitamins, exopolysaccharides and antioxidants. Bacteriocins, if produced, regulate pathogen numbers in the GIT and keep pro-inflammatory and anti-inflammatory reactions in balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Havenstein GB, Ferket PR, Qureshi MA (2003) Growth, livability, and feed conversion 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82(10):1500–1508

    CAS  PubMed  Google Scholar 

  2. Martin JL, Fyfe M, Doré K, Buxton JA, Pollari F, Henry B, Middleton D, Ahmed R, Jamieson F, Ciebin B, McEwen SA (2004) Increased burden of illness associated with antimicrobial resistant Salmonella enterica serotype Typhimurium infections. J Infect Dis 189(3):377–384

    PubMed  Google Scholar 

  3. Agyare C, Boamah VE, Zumbi CN, Osei FB (2018) Antimicrobial resistance - a global threat. Antibiotic use in poultry production and its effects on bacterial resistance. IntechOpen. https://doi.org/10.5772/intechopen.79371

  4. Ohimain EI, Ofongo RTS (2012) The effect of probiotic feed supplementation on chicken health and gut microflora: a review. Int J Anim Vet Adv 4:135–114

    CAS  Google Scholar 

  5. Kabir SML (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10(8):3531–3546

    CAS  Google Scholar 

  6. Ahmad I (2006) Effect of probiotics on broilers performance. Int J Poult Sci 5(6):593–597

    Google Scholar 

  7. Čermák L, Skřivanová E (2016) Influence of pasture rearing on the cecal bacterial microbiota in broiler chickens. Sci Agric Bohem 47:124–128

    Google Scholar 

  8. Mehdi Y, Létourneau-Montminy M, Gaucher M, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godboutb S (2018) Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 4(2):170–117

    PubMed  PubMed Central  Google Scholar 

  9. Madigan MT, Martinko JM, Bender KS, Buckley FH, Stahl DA (2014) Brock biology of microorganisms, 14th edn. Illinois, Pearson International, p 1006

    Google Scholar 

  10. Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance -the need for global solutions. Lancet Infect Dis 13:1057–1098

    Google Scholar 

  11. Odoi H (2016) isolation and characterization of multi-drug resistant Pseudomonas aeruginosa from clinical, environmental and poultry litter sources in Ashanti region of Ghana (MPhil thesis). Kumasi: Kwame Nkrumah University of Science and Technology

  12. Aniokette U, Iroha CS, Ajah MI, Nwakaeze AE (2016) Occurrence of multi-drug resistant gram-negative bacteria from poultry and poultry products sold in Abakaliki. J Agric Sci Food Technol 2:119–124

    Google Scholar 

  13. Sharma S, Galav V, Agrawal M, Faridi F, Kumar B (2017) Multi-drug resistance pattern of bacterial flora obtained from necropsy samples of poultry. J Anim Health Prod 5:165–171

    Google Scholar 

  14. Adelowo OO, Fagade OE, Agersø Y (2014) Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, Southwest Nigeria. J Infect Dev Ctries 8:1103–1112

    PubMed  Google Scholar 

  15. Medeiros MAN, de Oliveira DCN, Rodrigues DP, de Freitas DRC (2011) Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities. Pan American J Public Health 30:555–560

    Google Scholar 

  16. Nomoto R, Tien LHT, Sekizaki T, Osawa R (2013) Antimicrobial susceptibility of Streptococcus gallolyticus isolated from humans and animals. Jpn J Infect Dis 66:334–336

    PubMed  Google Scholar 

  17. Rożynek E, Dzierżanowska-Fangrat K, Korsak D, Konieczny P, Wardak S, Szych J, Jarosz M, Dzierżanowska D (2008) Comparison of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from humans and chicken carcasses in Poland. J Food Prot 71:602–607

    PubMed  Google Scholar 

  18. Nguyen TNM, Hotzel H, Njeru J, Mwituria J, El-Adawy H, Tomaso H, Neubauer H, Hafez HM (2016) Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya. Gut Pathog 8:1–9

    Google Scholar 

  19. Dallal MMS, Doyle MP, Rezadehbashi M, Dabiri H, Sanaei M, Modarresi S, Bakhtiari R, Sharifiy K, Taremi M, Zali MR, Sharifi-Yazdi MK (2010) Prevalence and antimicrobial resistance profiles of Salmonella serotypes, Campylobacter and Yersinia spp. isolated from retail chicken and beef, Tehran, Iran. Food Control 21(4):388–392

    CAS  Google Scholar 

  20. Zadernowska A, Chaje W (2017) Prevalence, bio film formation and virulence markers of Salmonella sp. and Yersinia enterocolitica in food of animal origin in Poland. LWT Food Sci Technol 75:552–556

    CAS  Google Scholar 

  21. Osman KM, Elhariri M (2013) Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev Sci Technol 32(2):841–850

    CAS  Google Scholar 

  22. Park JY, Kim S, Oh JY, Kim HR, Jang I, Lee HS, Kwon YK (2015) Poult Sci 94:1158–1164

    CAS  PubMed  Google Scholar 

  23. Fan YC, Wang CL, Wang C, Chen TC, Chou CH, Tsai HJ (2016) Incidence and antimicrobial susceptibility to Clostridium perfringens in premarket broilers in Taiwan. Avian Dis 60(2):444–449

    PubMed  Google Scholar 

  24. Floriştean V, Cretu C, Carp-Cărare M (2007) Bacteriological characteristics of Bacillus cereus isolates from poultry. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca 64:1–2

  25. Reza M, Lijon M, Khatun M, Islam M (2015) Prevalence and antibiogram profile of Mycobacterium spp. in poultry and its environments. J Adv Vet Anim Res 2(4):458

    Google Scholar 

  26. Kolář M, Pantůček R, Bardoň J, Vágnerová I, Typovská H, Válka I, Doškař J (2002) Occurrence of antibiotic-resistant bacterial strains isolated in poultry. Vet Med (Praha) 47(2–3):52–59

    Google Scholar 

  27. Vignaroli C, Zandri G, Aquilanti L, Pasquaroli S, Biavasco F (2011) Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium. Curr Microbiol 62(5):1438–1447

    CAS  PubMed  Google Scholar 

  28. Nahar A, Siddiquee M, Nahar S, Anwar KS, Ali SI, Islam S (2014) Multidrug resistant Proteus mirabilis isolated from chicken droppings in commercial poultry farms. Bio-security concern and emerging public health threat in Bangladesh. J Biosafety Health Educ 2(2):120–125

  29. Salyers AA, Amábile-Cuevas CF (1997) Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41(11):2321–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cogliani C, Goossens H, Greko C (2011) Restricting antimicrobial use in food animals: lessons from Europe. Microbe 6:274–279

    Google Scholar 

  31. Maron DF, Smith TJS, Nachman KE (2013) Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Glob Health 9:48

    Google Scholar 

  32. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 112:5649–5654

    PubMed  Google Scholar 

  33. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750

    PubMed  Google Scholar 

  34. Adhikari PA, Kim WK (2017) Overview of prebiotics and probiotics: focus on performance, gut health and immunity- a review. Ann Anim Sci 17:949–966

    Google Scholar 

  35. Wang H, Ni X, Qing X, Liu L, Lai J, Khalique A, Li G, Pan K, Jing B, Zeng D (2017) Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front Immunol 8:1592

    PubMed  PubMed Central  Google Scholar 

  36. Dunislawska A, Slawinska A, Stadnicka K, Bednarczyk M, Gulewicz P, Jozefiak D, Siwek M (2017) Synbiotics for broiler chickens- In vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS One 12:e0168587

    PubMed  PubMed Central  Google Scholar 

  37. Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52:7577–7587

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gheisar MM, Kim IH (2018) Phytobiotics in poultry and swine nutrition - a review. Ital J Anim Sci 17:92–99

    Google Scholar 

  39. Kiarie E, Romero LF, Nyachoti CM (2013) The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev 26:71–88

    PubMed  Google Scholar 

  40. Yang Y, Iji PA, Choct M (2009) Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. Worlds Poult Sci J 65:97–114

    Google Scholar 

  41. Alcicek A, Bozkurt M, Cabuk M (2004) The effect of a mixture of herbal essential oils, an organic acid or a probiotic on broiler performance. SA J Anim Sci 34:217–222

    CAS  Google Scholar 

  42. Brenes A, Roura E (2010) Essential oils in poultry nutrition: main effects and modes of action. Anim Feed Sci Technol 158:1–14

    CAS  Google Scholar 

  43. Huff GR, Farnell MB, Huff WE, Rath NC, Solis De Los Santos F, Donoghue AM (2010) Bacterial clearance, heterophil function, and hematological parameters of transport-stressed Turkey poults supplemented with dietary yeast extract. Poult Sci 89:447–456

    CAS  PubMed  Google Scholar 

  44. Ghareeb K, Awad WA, Mohnl M, Porta R, Biarnés M, Böhm J, Schatzmayr G (2012) Evaluating the efficacy of an avian-specific probiotic to reduce the colonisation of Campylobacter jejuni in broiler chickens. Poult Sci 91:1825–1832

    CAS  PubMed  Google Scholar 

  45. Sterzo EV, Paiva JB, Mesquita AL, Freitas Neto OC, Berchieri S (2007) Organic acids and/or compound with defined microorganisms to control Salmonella enterica serovar Enteritidis experimental infection in chickens. Rev Bras Cienc Avic 9:69–73

    Google Scholar 

  46. Teo AY, Tan H-M (2007) Evaluation of the performance and intestinal gut microflora of broiler fed on corn-soy diets supplemented with Bacillus subtilis PB6 (CloSTAT™). J Appl Poult Res 16:296–303

    CAS  Google Scholar 

  47. Melegy T, Khaled NF, El-Bana R, Abdellatif H (2011) Effect of dietary supplementation of Bacillus subtilis PB6 (CLOSTAT™) on performance, immunity, gut health and carcass traits in broilers. J Am Sci 7:891–898

    Google Scholar 

  48. Lourenco MC, Kuritza LN, Westphal P, Muniz E, Pickler L, Santin E (2012) Effects of Bacillus subtilis in the dynamics of infiltration of immunological cells in the intestinal mucosa of chickens challenged with Salmonella Minnesota. Int J Poult Sci 11:630–634

    CAS  Google Scholar 

  49. Abudabos AM, Alyemni AH, Al Marshad MBA (2013) Bacillus subtilis PB6 based probiotic (CloSTAT™) improves intestinal morphological and microbiological status of broiler chickens under Clostridium perfringes challenge. Int J Agric Biol 15:978–982

    Google Scholar 

  50. Gutierrez-Fuentes CG, Zuñiga-Orozco LA, Vicente JL, Hernandez-Velasco X, Menconi A, Kuttappan VA, Kallapura G, Latorre J, Layton S, Hargis BM, Téllez G (2013) Effect of a lactic acid bacteria based probiotic, Floramax-B11®, on performance, bone qualities, and morphometric analysis of broiler chickens: an economic analysis. Biol Syst 2:113

    Google Scholar 

  51. Prado-Rebolledo OF, de Jesus D-MJ, Macedo-Barragan RJ, Garcia-Márquez LJ, Morales-Barrera JE, Latorre JD, Hernandez-Velasco X, Tellez G (2017) Evaluation of a selected lactic acid bacteria-based probiotic on Salmonella enterica serovar Enteritidis colonisation and intestinal permeability in broiler chickens. Avian Pathol 46:90–94

    PubMed  Google Scholar 

  52. Neveling DP, Van Emmenes L, Ahire JJ, Pieterse E, Smith C, Dicks LMT (2019) Effect of a multi-species probiotic on the colonisation of Salmonella in broilers. Prob Antimicrob Prot:1–10 published online. https://doi.org/10.1007/s12602-019-09593-y

  53. Bouzaine T, Dauphin RD, Thonart PH, Urdaci MC, Hamdi M (2005) Adherence and colonization properties of Lactobacillus rhamnosus TB1, a broiler chicken isolate. Lett Appl Microbiol 40(5):391–396

    CAS  PubMed  Google Scholar 

  54. Rocha TS, Baptista AAS, Donato TC, Milbradt EL, Okamoto AS, Rodrigues JCZ, Coppola MP, Andreatti Filho RL (2012) Evaluation of in vitro and in vivo adhesion and immunomodulatory effect of Lactobacillus species strains isolated from chickens. Poult Sci 91(2):362–369

    CAS  PubMed  Google Scholar 

  55. Sherman PM, Ossa JC, Johnson-Henry K (2009) Unraveling mechanisms of action of probiotics. Nutr Clin Pract 24(1):10–14

    PubMed  Google Scholar 

  56. Rehman HU, Vahjen W, Awad WA, Zentek J (2007) Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch Anim Nutr 61:319–335

    PubMed  Google Scholar 

  57. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3(4):289–306

    PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Gu Q (2010) Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Res Vet Sci 89(2):163–167

    CAS  PubMed  Google Scholar 

  59. Hmani H, Daoud L, Jlidi M, Jalleli K, Ali MB, Brahim AH, Bargui M, Dammak A, Ali MB (2017) A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. J Ind Microbiol Biotechnol 44(8):1157–1166

    CAS  PubMed  Google Scholar 

  60. Wealleans AL, Walsh MC, Romero LF, Ravindran V (2017) Comparative effects of two multi-enzyme combinations and a Bacillus probiotic on growth performance, digestibility of energy and nutrients, disappearance of non-starch polysaccharides, and gut microflora in broiler chickens. Poult Sci 93(12):4287–4297

    Google Scholar 

  61. Zhang ZF, Kim IH (2014) Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult Sci 93(2):364–370

    CAS  PubMed  Google Scholar 

  62. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories 16:79

    Google Scholar 

  63. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191

    PubMed  Google Scholar 

  64. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    CAS  PubMed  Google Scholar 

  65. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Google Scholar 

  66. Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T (2006) Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr 95(5):916–924

    CAS  PubMed  Google Scholar 

  67. Bolton W, Dewar WA (1965) The digestibility of acetic, propionic and butyric acids by the fowl. Br Poult Sci 6(2):103–105

    CAS  PubMed  Google Scholar 

  68. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168

    CAS  PubMed  Google Scholar 

  69. Eck P, Friel J (2013) Should probiotics be considered as vitamin supplements? Vitam Miner 2:e124

    Google Scholar 

  70. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    CAS  PubMed  Google Scholar 

  71. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69(8):2011–2015

    CAS  PubMed  Google Scholar 

  72. Quinteiro-Filho WM, Brisbin JT, Hodgins DC, Sharif S (2015) Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities. Res Vet Sci 103:170–1753

    CAS  PubMed  Google Scholar 

  73. Apata DF (2008) Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. J Sci Food Agric 88:1253–1258

    CAS  Google Scholar 

  74. Nishimura J (2014) Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus. Adv Microbiol 4(14):1017–1020

    Google Scholar 

  75. Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S (2004) Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B(T). J Agric Food Chem 52(17):5533–5538

    CAS  PubMed  Google Scholar 

  76. Fernandez F, Hinton M, Van Gils B (2002) Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonisation. Avian Pathol 31(1):49–58

    CAS  PubMed  Google Scholar 

  77. Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJ, Jain S, Yadav H (2010) Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr 61(5):473–496

    CAS  PubMed  Google Scholar 

  78. Mishra B, Jha R (2019) Oxidative stress in the poultry gut: potential challenges and interventions. Front Vet Sci 6:60

    PubMed  PubMed Central  Google Scholar 

  79. Tangvarasittichai S (2015) Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 6(3):456–480

    PubMed  PubMed Central  Google Scholar 

  80. Stancu CS, Toma L, Sima AV (2012) Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res 349(2):433–446

    CAS  PubMed  Google Scholar 

  81. Shokryazdan P, Jahromi MF, Liang JB, Ramasamy K, Sieo CC, Ho YW (2017) Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE 12(5):e0175959

    PubMed  PubMed Central  Google Scholar 

  82. Yalçin S, Eser H, Yalçin S, Yalçin SS (2016) Effects of probiotics on some blood parameters and serum IgG in broilers. J Pediatr Gastr Nutr 63(1S):S57

    Google Scholar 

  83. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Sci 11(6):2499–2522

    CAS  Google Scholar 

  85. Oakley BB, Morales CA, Line J, Berrang ME, Meinersmann RJ, Tillman GE, Wise MG, Siragusa GR, Hiett KL, Seal BS (2013) The poultry-associated microbiota: network analysis and farm-to-fork characterizations. PLoS ONE 8:e57190

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frank D, Zhu W, Sartor RB, Li E (2011) Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 19(9):427–434

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6(1):39–51

    CAS  Google Scholar 

  88. Howarth GS, Wang H (2013) Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5(1):58–81

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82(4):627–631

    CAS  PubMed  Google Scholar 

  90. O’Toole P, Cooney J (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 17525

  91. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG (Salazar N, 2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol:185

  92. Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45(2):713–721

    Google Scholar 

  93. Alakomi H-L, Puupponen-Pimiä R, Aura A-M, Helander IM, Nohynek L, Oksman-Caldentey K-M, Saarela M (2007) Weakening of Salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J Agric Food Chem 55(10):3905–3912

    CAS  PubMed  Google Scholar 

  94. Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY (2012) Use of hydrogen peroxide as a biocide: a new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 67(7):1589–1596

    CAS  PubMed  Google Scholar 

  95. Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M (2019) Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci Rep 9:14176

    PubMed  PubMed Central  Google Scholar 

  96. Hu F, Gao X, She R, Chen J, Mao J, Xiao P, Shi R (2017) Effects of antimicrobial peptides on growth performance and small intestinal function in broilers under chronic heat stress. Poult Sci 96(4):798–806

    CAS  PubMed  Google Scholar 

  97. Eijsink VGH, Axelsson L, Diep DB, Havarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81(1–4):639–654

    CAS  PubMed  Google Scholar 

  98. O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2011) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152(3):189–205

    PubMed  Google Scholar 

  99. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14(3):166–171

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zheng J, Gänzle MG, Lin XB, Ruan L, Sun M (2015) Diversity and dynamics of bacteriocins from human microbiota. Environ Microbiol 17(6):2133–2143

    CAS  PubMed  Google Scholar 

  101. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    CAS  PubMed  Google Scholar 

  102. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1–3):39–85

    CAS  PubMed  Google Scholar 

  103. Kierończyk B, Pruszyńska-Oszmałek E, Świątkiewicz S, Rawski M, Długosz J, Engberg EM, Józefiak D (2016) The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition. J Anim Feed Sci 25:309–316

    Google Scholar 

  104. Ustundag AO, Ozdogan M (2019) Effects of bacteriocin and organic acid on growth performance, small intestine histomorphology, and microbiology in Japanese quails (Coturnix coturnix japonica). Trop Anim Health Prod 51:2187

  105. Proctor A, Phillips GJ (2019) Differential effects of bacitracin methylene disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Front Vet Sci 6:144

    Google Scholar 

  106. Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84(5–6):357–364

    CAS  PubMed  Google Scholar 

  107. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A (2007) Cell-cell communication in food related bacteria. Int J Food Microbiol 120(1–2):34–45

    CAS  PubMed  Google Scholar 

  108. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    CAS  PubMed  Google Scholar 

  109. Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD (2016) Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res 5:2587

    PubMed  PubMed Central  Google Scholar 

  110. Pourabedin M, Chen Q, Yang M, Zhao X (2017) Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbiol Ecol 93(1):fiw226

    PubMed  Google Scholar 

  111. Pourabedin M, Guan L, Zhao X (2015) Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 3:15

    PubMed  PubMed Central  Google Scholar 

  112. Borda-Molina D, Seifert J, Camarinha-Silva A (2016) Current perspectives of the chicken gastrointestinal tract and its microbiome. Comput Struct Biotecnol J 16:131–139

    Google Scholar 

  113. Johnson TJ, Youmans BP, Noll S, Cardona C, Evans NP, Karnezos TP, Ngunjiri JM, Abundo MC, Lee C (2018) A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl Environ Microbiol 84(12):e00362–e00318

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jurburg SD, Brouwer MSM, Ceccarelli D, van der Goot J, Jansman AJM, Bossers A (2019) Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. Microbiology Open 8:e821

  115. Sanders ME (2016) Probiotics and microbiota composition. BMC Med 14(1):82

    PubMed  PubMed Central  Google Scholar 

  116. Patterson JA (2011) The commensal microbiota. In: Callaway TR, Ricke SC (eds) Direct-fed microbials and prebiotics for animals. Springer, New York, pp 3–11

    Google Scholar 

  117. Yana FF, Wang WC, Cheng HW (2018) Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens. J Funct Foods 49:501–509

    Google Scholar 

  118. Yan F, Murugesan G, Cheng H (2019) Effects of probiotic supplementation on performance traits, bone mineralization, cecal microbial composition, cytokines and corticosterone in laying hens. Animal 13(1):33–41

    CAS  PubMed  Google Scholar 

  119. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Phys 269(4 Pt 1):G467–G475

    CAS  Google Scholar 

  120. Rao RK, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9(2):99–107

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Corridoni D, Pastorelli L, Mattioli B, Locovei S, Ishikawa D, Arseneau KO, Chieppa M, Cominelli F, Pizarro TT (2012) Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS ONE 7:e42067

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237

    CAS  PubMed  Google Scholar 

  123. Howarth GS (2010) Probiotic-derived factors: probiotaceuticals? J Nutr 140(2):229–230

    CAS  PubMed  Google Scholar 

  124. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501

    PubMed  PubMed Central  Google Scholar 

  125. Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Hernandez-Velasco X, Merino-Guzman R, Adhikari B, López-Arellano R, Kwon YM, Hargis BM, Arreguin-Nava MA, Tellez-Isaias G, Latorre JD (2019) Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions, and ileal microbiota in broiler chickens using a laboratory challenge model. Front Vet Sci 6:108

    PubMed  PubMed Central  Google Scholar 

  126. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10:316

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X (2018) Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci Rep 8:2229

    PubMed  PubMed Central  Google Scholar 

  128. Llewellyn A, Foey A (2017) Probiotic modulation of innate cell pathogen sensing and signalling events. Nutrients 9(10):E1156

    PubMed  Google Scholar 

  129. Prisciandaro LD, Geier MS, Butler RN, Cummins AG, Howarth GS (2011) Evidence supporting the use of probiotics for the prevention and treatment of chemotherapy-induced intestinal mucositis. Crit Rev Food Sci Nutr 51(3):239–247

    PubMed  Google Scholar 

  130. Zhang L, Li N, Caicedo R, Neu J (2005) Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-alpha-induced interleukin-8 production in Caco-2 cells. J Nutr 135(7):1752–1756

    CAS  PubMed  Google Scholar 

  131. Ko JS, Yang HR, Chang JY, Seo JK (2007) Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-alpha. World J Gastroenterol 13(13):1962–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun Y, Rajput IR, Arain MA, Li Y, Baloch DM (2016) Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens. Anim Sci J 88(8):1204–1211

    PubMed  Google Scholar 

  133. Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front Microbiol 8:1073

    PubMed  PubMed Central  Google Scholar 

  134. Beski SSM, Al-Sardary SYT (2015) Effects of dietary supplementation of probiotic and synbiotic on broiler chickens hematology and intestinal integrity. Int J Poult Sci 14(1):31–36

    CAS  Google Scholar 

  135. Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277(52):50959–50965

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575

    CAS  PubMed  Google Scholar 

  137. Hausmann M (2010) How bacteria-induced apoptosis of intestinal epithelial cells contributes to mucosal inflammation. Int J Inflam:574568

  138. Khailova L, Mount Patrick SK, Arganbright KM, Halpern MD, Kinouchi T, Dvorak B (2010) Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 299(5):G1118–G1127

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dykstra NS, Hyde L, Adawi D, Kulik D, Ahme S, Molin G, Jeppsson B, Mackenzie A, Mack DR (2011) Pulse probiotic administration induces repeated small intestinal MUC3 expression in rats. Pediatr Res 69(3):206–211

    PubMed  Google Scholar 

  140. Aliakbarpour HR, Chamani M, Rahimi G, Sadeghi AA, Qujeq D (2012) The Bacillus subtilis and lactic acid bacteria probiotics influences intestinal mucin gene expression, histomorphology and growth performance in broilers. Asian Australas J Anim Sci 25(9):1285–1293

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Majidi-Mosleh A, Sadeghi AA, Mousavi SN, Chamani M, Zarei A (2017) Effects of in ovo infusion of probiotic strains on performance parameters, jejunal bacterial population and mucin gene expression in broiler chicken. Braz J Poultry Sci 19:97–102

    Google Scholar 

  142. Tsirtsikos P, Fegeros K, Balaskas C, Kominakis A, Mountzouris KC (2012) Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology in broilers. Poult Sci 91(8):1860–1868

    CAS  PubMed  Google Scholar 

  143. O’Callaghan J, Butto LF, Macsharry J, Nally K, O’Toole PW (2012) Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response. Appl Environ Microbiol 78(15):5196–5203

    PubMed  PubMed Central  Google Scholar 

  144. Quach D, Britton RA (2017) Gut microbiota and bone health. Adv Exp Med Biol 1033:47–58

    CAS  PubMed  Google Scholar 

  145. Sylvester FA (2017) Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol 1033:133–150

    CAS  PubMed  Google Scholar 

  146. Mutuş R, Kocabaǧli N, Alp M, Acar N, Eren M, Gezen ŞŞ (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85(9):1621–1625

    PubMed  Google Scholar 

  147. Lavoie B, Lian JB, Mawe GM (2017) Regulation of bone metabolism by serotonin. Adv Exp Med Biol 1033:35–46

    CAS  PubMed  Google Scholar 

  148. Ramsey W, Isales CM (2017) Intestinal incretins and the regulation of bone physiology. Adv Exp Med Biol 1033:13–33

    CAS  PubMed  Google Scholar 

  149. Christakos S, Veldurthy V, Patel N, Wei R (2017) Intestinal regulation of calcium: vitamin D and bone physiology. Adv Exp Med Biol 1033:3–12

    CAS  PubMed  Google Scholar 

  150. Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW (2018) Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci 96(5):1654–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T (2017) Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 96(1):74–82

    CAS  PubMed  Google Scholar 

  152. Khan AZ, Kumbhar S, Liu Y, Hamid M, Pan C, Nido SA, Parveen F, Huang K (2018) Dietary supplementation of selenium-enriched probiotics enhances meat quality of broiler chickens (Gallus gallus domesticus) raised under high ambient temperature. Biol Trace Elem Res 182:328

    CAS  PubMed  Google Scholar 

  153. Ebeid TA, Fathi MM, Al-Homidan I, Ibrahim ZH, Al-Sagan AA (2019) Effect of dietary probiotics and stocking density on carcass traits, meat quality, microbial populations and ileal histomorphology in broilers under hot-climate conditions. Anim Prod Sci 59:1711–1719

    Google Scholar 

  154. Aksu Mİ, Karaǒlu M, Esenbǔa N, Kaya M, Macit M, Ockerman HW (2005) Effect of a dietary probiotic on some quality characteristics of raw broiler drumsticks and breast meat. J Muscle Foods 16(4):306–317

    Google Scholar 

  155. Cramer TA, Kim HW, Chao Y, Wang W, Cheng HW, Kim YHB (2018) Effects of probiotic (Bacillus subtilis) supplementation on meat quality characteristics of breast muscle from broilers exposed to chronic heat stress. Poult Sci 97(9):3358–3368

    CAS  PubMed  Google Scholar 

  156. Yang X, Zhang B, Guo Y, Jiao P, Long F (2010) Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult Sci 89(2):254–260

    CAS  PubMed  Google Scholar 

  157. Kim HW, Yan FF, Hu JY, Cheng HW, Kim YHB (2016) Effects of probiotics feeding on meat quality of chicken breast during postmortem storage. Poult Sci 95(6):1457–1464

    CAS  PubMed  Google Scholar 

  158. Zhang ZF, Zhou TX, Ao X, Kim IH (2012) Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize-soybean meal based diets. Livest Sci 150(1–3):419–424

    Google Scholar 

  159. Abdulla NR, Zamri ANM, Sabow AB, Kareem KY, Nurhazirah S, Ling FH, Sazili AQ, Loh TC (2017) Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic-probiotic mix. J Appl Anim Res 45(1):64–70

    CAS  Google Scholar 

  160. Liu X, Yan H, Xu Q, Yin C, Zhang K, Wang P, Hu J (2012) Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian Australas J Anim Sci 25(5):682–689

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M.T. Dicks.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neveling, D.P., Dicks, L.M. Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing. Probiotics & Antimicro. Prot. 13, 1–11 (2021). https://doi.org/10.1007/s12602-020-09640-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09640-z

Keywords

Navigation