Skip to main content

Advertisement

Log in

Phloroglucinols from Myrtaceae: attractive targets for structural characterization, biological properties and synthetic procedures

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

A Correction to this article was published on 09 September 2020

This article has been updated

Abstract

Myrtaceae Juss. is a very large family of flowering plants, that are a valuable source of bioactive compounds. From the phytochemical point of view, apart from ubiquitous tannins, flavonoid derivatives and volatile oils, Myrtaceae plants are very rich in phloroglucinol derivatives, divided in two principal subclasses: oligomeric acylphloroglucinols and phloroglucinol-terpene adducts. Despite this large structural variability, many studies on phloroglucinols from the Myrtaceae have focused on unique bioactive acylphloroglucinol compounds, named myrtucommulones. Nevertheless, many studies also reported other interesting phloroglucinol derivatives. Therefore, in this review, a comprehensive description of the chemical features of acylphloroglucinols and meroterpenoid-acylphloroglucinols from the Myrtaceae family is presented along with their biological activities. Moreover, since myrtucommulones and their derivatives have become attractive targets for organic chemists, thanks to their structural features and biological activities, relevant approaches and synthetic procedures are herewith discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  • Alipour G, Dashti S, Hosseinzadeh H (2014) Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res 28:1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Appendino G, Bianchi F, Minassi A et al (2002) Oligomeric acylphloroglucinols from myrtle (Myrtus communis). J Nat Prod 65:334–338

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Sasai H, Aoe K et al (1996) A new multifunctional heterobimetallic asymmetric catalyst for Michael additions and tandem Michael–aldol reactions. Angew Chem Inf Ed Engl 35:104–106

    Article  CAS  Google Scholar 

  • Berger BA, Kriebel R, Spalink D, Sytsma KJ (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Mol Phyl Evol 95:116–136

    Article  Google Scholar 

  • Biffin E, Lucas E, Craven L et al (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann Bot 106:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloor SJ (1992) Antiviral phloroglucinols from New Zealand Kunzea species. J Nat Prod 55:43–47

    Article  CAS  PubMed  Google Scholar 

  • Brezáni V, Šmejkal K (2013) Secondary metabolites isolated from the genus Eucalyptus. Curr Trends Med Chem 7:65–95

    Google Scholar 

  • Brezáni V, Leláková V, Hassan STS, Berchová-Bímová K et al (2018) Anti-infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses 10:360

    Article  PubMed Central  CAS  Google Scholar 

  • Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae—evidence from inflorescence structure. Proc Linn Soc N S W 102:157–256

    Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust Syst Bot 13:79–148

    Article  Google Scholar 

  • Cao JQ, Huang XJ, Li YT et al (2016) Callistrilones A and B, triketone–phloroglucinol–monoterpene hybrids with a new skeleton from Callistemon rigidus. Org Lett 18:120–123

    Article  CAS  PubMed  Google Scholar 

  • Cao JQ, Tian HY, Li MM et al (2018a) Rearranged phloroglucinol-monoterpenoid adducts from Callistemon rigidus. J Nat Prod 81:57–62

    Article  CAS  PubMed  Google Scholar 

  • Cao JQ, Wu Y, Zhong YL et al (2018b) Antiviral triketone-phloroglucinol-monoterpene adducts from Callistemon rigidus. Chem Biodivers 15:e1800172

    Article  PubMed  CAS  Google Scholar 

  • Charpentier M, Jauch J (2017) Metal catalysed versus organocatalysed stereoselective synthesis: the concrete case of myrtucommulones. Tetrahedron 73:6614–6623

    Article  CAS  Google Scholar 

  • Charpentier M, Hans M, Jauch J (2013) Enantioselective synthesis of myrtucommulone A. Eur J Org Chem 19:4078–4084

    Article  CAS  Google Scholar 

  • Chase MW, Christenhusz MJM, Fay MF et al (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Chen M, Chen LF, Li M-M et al (2017) Myrtucomvalones A-C, three unusual triketone–sesquiterpene adducts from the leaves of Myrtus communis ‘Variegata’. RSC Adv 7:22735–22740

    Article  CAS  Google Scholar 

  • Chenavas S, Fiorini-Puybaret C, Joulia P et al (2015) New formylated phloroglucinol compounds from Eucalyptus globulus foliage. Phytochem Lett 11:69–73

    Article  CAS  Google Scholar 

  • Cheng MJ, Cao JQ, Yang XY et al (2018) Catalytic asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. Chem Sci 9:1488–1495

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Khan N, Ahmad M et al (2013) New inhibitors of ROS generation and T-cell proliferation from Myrtus communis. Org Lett 15:1862–1865

    Article  CAS  PubMed  Google Scholar 

  • Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotax 261:201–217

    Article  Google Scholar 

  • Ciccarelli D, Garbari F, Pagni AM (2008) The flower of Myrtus communis (Myrtaceae): secretory structures, unicellular papillae, and their ecological role. Flora 203:85–93

    Article  Google Scholar 

  • Cock JE, Cheesman M (2019) Plants of the genus Syzygium (Myrtaceae): a review on ethnobotany, medicinal properties and phytochemistry. In: Goyal MR, Ayeleso AO (eds) Bioactive compounds of medicinal plants. Apple Academic Press, Waretown, pp 35–84

    Google Scholar 

  • Cottiglia F, Casu L, Leonti M et al (2012) Cytotoxic phloroglucinols from the leaves of Myrtus communis. J Nat Prod 75:225–229

    Article  CAS  PubMed  Google Scholar 

  • Craven LA, Biffin E (2010) An infrageneric classification of Syzygium (Myrtaceae). Blumea 55:94–99

    Article  Google Scholar 

  • Dethe DH, Dherange BD, Das S (2018) Biomimetic total syntheses of callistrilones A, B, and D. Org Lett 20:680–683

    Article  CAS  PubMed  Google Scholar 

  • dos Santos W, de Oliveira E, Lavarda F et al (2017) One-step synthesis of methoxylated phloroglucinol derivatives promoted by Niobium Pentachloride: an experimental and theoretical approach. Synthesis (Stuttg) 49:2402–2410

    Article  CAS  Google Scholar 

  • Edwards RD, Craven LA, Crisp MD, Cook LG (2010) Melaleuca revisited: cpDNA and morphological data confirm that Melaleuca L. (Myrtaceae) is not monophyletic. Taxon 59:744–754

    Article  Google Scholar 

  • Faqueti LG, Farias IV, Sabedot EC et al (2015) Macrocarpal-like compounds from Eugenia umbelliflora fruits and their antibacterial activity. J Agric Food Chem 63:8151–8155

    Article  CAS  PubMed  Google Scholar 

  • Farias IV, Faqueti LG, Noldin VF et al (2018) Cytotoxic phloroglucinol meroterpenoid from Eugenia umbelliflora fruits. Phytochem Lett 27:187–192

    Article  CAS  Google Scholar 

  • Feißt C, Franke L, Appendino G, Werz O (2005) Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. JPET 315:389–396

    Article  CAS  Google Scholar 

  • Ferlinahayati AD, Eliza UB (2019) α-Glucosidase inhibitory and a leptospermone derivative from Rhodomyrtus tomentosa. Indones J Chem 20:307–313

    Article  CAS  Google Scholar 

  • Fiorini-Puybaret C, Aries M-F, Fabre B et al (2011) Pharmacological properties of Myrtacine (R) and its potential value in acne treatment. Planta Med 77:1582–1589

    Article  CAS  PubMed  Google Scholar 

  • Fu HZ, Luo YM, Li CJ et al (2010) Psidials A-C, three unusual meroterpenoids from the Leaves of Psidium guajava L. Org Lett 12:656–659

    Article  CAS  PubMed  Google Scholar 

  • Gadek PA, Wilson PG, Quinn CJ (1996) Phylogenetic reconstruction in Myrtaceae using matK, with particular reference to the position of Psiloxylon and Heteropyxis. Aust Syst Bot 9:283–290

    Article  Google Scholar 

  • Gervais A, Lazarski KE, Porco JA (2015) Divergent total syntheses of rhodomyrtosones A and B. J Org Chem 80:9584–9591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghisalberti EL (1996) Bioactive acylphloroglucinol derivatives from Eucalyptus species. Phytochemistry 41:7–22

    Article  CAS  PubMed  Google Scholar 

  • Govaerts R, Sobral N, Ashton P et al (2008) World checklist of Myrtaceae. Royal Botanic Gardens, Kew, pp 1–455

    Google Scholar 

  • Grattapaglia D, Vaillancourt RE, Shepherd M et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508

    Article  Google Scholar 

  • Guo Y, Zhang Y, Xiao M, Xie Z (2018) Biomimetic syntheses of callistrilones A-E via an oxidative [3 + 2] cycloaddition. Org Lett 20:2509–2512

    Article  CAS  PubMed  Google Scholar 

  • Hamid HA, Mutazah SSZR, Yusoff MM (2017) Rhodomyrtus tomentosa: a phytochemical and pharmacological, review. Asian J Pharm Clin Res 10:10–16

    Article  CAS  Google Scholar 

  • Hans M, Charpentier M, Huch V et al (2015) Stereoisomeric composition of natural Myrtucommulone A. J Nat Prod 78:2381–2389

    Article  CAS  PubMed  Google Scholar 

  • Hennia A, Miguel MG, Nemmiche S (2018) Antioxidant activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. extracts: a brief review. Medicines 5:89

    Article  CAS  PubMed Central  Google Scholar 

  • Hiranrat A, Mahabusarakam W, Carroll AR et al (2012) Tomentosones A and B, hexacyclic phloroglucinol derivatives from the thai shrub Rhodomyrtus tomentosa. J Org Chem 77:680–683

    Article  CAS  PubMed  Google Scholar 

  • Hiranrat W, Hiranrat A, Mahabusarakam W (2017) Rhodomyrtosones G and H, minor phloroglucinols from the leaves of Rhodomyrtus tomentosa. Phytochem Lett 21:25–28

    Article  CAS  Google Scholar 

  • Hou JQ, Guo C, Zhao JJ et al (2017a) Anti-inflammatory Meroterpenoids from Baeckea frutescens. J Nat Prod 80:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Hou JQ, Guo C, Zhao JJ et al (2017b) Frutescone A-G, tasmanone-based meroterpenoids from the aerial parts of Baeckea frutescens. J Org Chem 82:1448–1457

    Article  CAS  PubMed  Google Scholar 

  • Hou JQ, Wang BL, Han C et al (2018) Atropisomeric meroterpenoids with rare triketone-phloroglucinol-terpene hybrids from Baeckea frutescens. Org Biomol Chem 16:8513–8524

    Article  CAS  PubMed  Google Scholar 

  • Hu L-J, Cheng M-J, Cao J-Q et al (2018) Asymmetric total syntheses of callistrilones B, G and J. Org Chem Front 5:1506–1510

    Article  CAS  Google Scholar 

  • Iskender B, Izgi K, Karaca H, Canatan H (2015) Myrtucommulone-A treatment decreases pluripotency-and multipotency-associated marker expression in bladder cancer cell line HTB-9. J Nat Med 69:543–554

    Article  CAS  PubMed  Google Scholar 

  • Iskender B, Izgi K, Sakalar C, Canatan H (2016a) Priming hMSCs with a putative anti-cancer compound, myrtucommulone-A: a way to harness hMSC cytokine expression via modulating PI3K/Akt pathway? Tumor Biol 37:1967–1981

    Article  CAS  Google Scholar 

  • Iskender B, Izgi K, Canatan H (2016b) Novel anti-cancer agent myrtucommulone-A and thymoquinone abrogate epithelial–mesenchymal transition in cancer cells mainly through the inhibition of PI3K/AKT signaling axis. Mol Cell Biochem 416:71–84

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Nisa K, Rakainsa SK et al (2017) New phloroglucinol derivatives from Indonesian Baeckea frutescens. Tetrahedron 73:1177–1181

    Article  CAS  Google Scholar 

  • Ivanov KL, Vatsouro IM, Bezzubov SI et al (2018) Domino construction of a bullataketal core via double bond cleavage in activated dihydrofurans. Org Chem Front 5:1655–1663

    Article  CAS  Google Scholar 

  • Izgi K, Iskender B, Jauch J et al (2015) Myrtucommulone-A induces both extrinsic and intrinsic apoptotic pathways in cancer cells. J Biochem Mol Toxicol 29:432–439

    Article  CAS  PubMed  Google Scholar 

  • Jauch J, Müller H, Werz O, Wiechmann K (2014) Myrtucommulone analogues. European Patent EP 2 695 874 A1, 12 Feb 2014

  • Jian YQ, Wang Y, Huang XJ et al (2012) Two new euglobals from the leaves of Eucalyptus robusta. J Asian Nat 14:831–837

    Article  CAS  Google Scholar 

  • Jian YQ, Huang XJ, Zhang DM et al (2015) Guapsidial A and Guadials B and C: three new meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Chem Eur J 21:9022–9027

    Article  CAS  PubMed  Google Scholar 

  • Jian KL, Zhang C, Shang ZC et al (2017) Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells. Phytomedicine 25:71–82

    Article  CAS  PubMed  Google Scholar 

  • Johnson LAS, Briggs BG (1984) Myrtales and Myrtaceae: a phylogenetic analysis. Ann Missouri Bot 71:700–756

    Article  Google Scholar 

  • Kasajima N, Ito H, Hatano T, Yoshida T (2008) Phloroglucinol diglycosides accompanying hydrolyzable tannins from Kunzea ambigua. Phytochemistry 69:3080–3086

    Article  CAS  PubMed  Google Scholar 

  • Kashman Y, Rotstein A, Lifshitz A (1974) The structure determination of two new acylphloroglucinols from Myrtus communis L. Tetrahedron 30:991–997

    Article  CAS  Google Scholar 

  • Kato E, Kawakami K, Jun K (2018) Macrocarpal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form. J Enzym Inhib Med Chem 331:106–109

    Article  CAS  Google Scholar 

  • Kitazato K, Wang Y, Kobayashi N (2007) Viral infectious disease and natural products with antiviral activity. Drug Discov Ther 11:14–22

    Google Scholar 

  • Koeberle A, Pollastro F, Northoff H, Werz O (2009) Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E2 synthase-1. Br J Pharmacol 156:952–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Article  Google Scholar 

  • Larsen L, Benn MH, Parvez M, Perrry NB (2005) A cytotoxic triketone-phloroglucinol-bullatenone hybrid from Lophomyrtus bullata. Org Biomol Chem 3:3236–3241

    Article  CAS  PubMed  Google Scholar 

  • Li GQ, Zhang YB, Wu P et al (2015) New phloroglucinols derivatives from the fruit tree Syzygium jambos and their cytotoxic and antioxidant activities. J Agric Food Chem 63:10257–10262

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Staerk D, Kongstad KT (2020) Potential of Myrtus communis Linn. as a bifunctional food: Dual high-resolution PTP1B and α-glucosidase inhibition profiling combined with HPLC-HRMS and NMR for identification of antidiabetic triterpenoids and phloroglucinol derivatives. J Funct Foods 64:103623

    Article  CAS  Google Scholar 

  • Liu HX, Zhang WM, Xu ZF et al (2016a) Isolation, synthesis, and biological activity of tomentosenol A from the leaves of Rhodomyrtus tomentosa. RSC Adv 6:25882–25886

    Article  CAS  Google Scholar 

  • Liu HX, Chen K, Liu Y et al (2016b) Callviminols A-E, new terpenoid-conjugated phloroglucinols from the leaves of Callistemon viminalis. Fitoterapia 115:142–147

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ang S, Huang XJ et al (2016c) Meroterpenoids with new skeletons from Myrtus communis and structure revision of Myrtucommulone K. Org Lett 18:4004–4007

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Chen K, Tang GH et al (2016d) Isolation and biomimetic total synthesis of tomentodiones A-B, terpenoid-conjugated phloroglucinols from the leaves of Rhodomyrtus tomentosa. RSC Adv 6:48231–48236

    Article  CAS  Google Scholar 

  • Liu F, Yuan T, Liu W et al (2017a) Phloroglucinol derivatives with protein tyrosine phosphatase 1B inhibitory activities from Eugenia jambolana seeds. J Nat Prod 80:544–550

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Huo L, Yang B et al (2017b) Biomimetic-Inspired syntheses of Myrtucommuacetalone and Myrtucommulone. J Org Lett 19:4786–4789

    Article  CAS  Google Scholar 

  • Liu J, Song JG, Su JC et al (2018a) Tomentodione E, a new sec-pentyl syncarpic acid-based meroterpenoid from the leaves of Rhodomyrtus tomentosa. J Asian Nat Prod Res 20:67–74

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Feng MY, Yu Q et al (2018b) Formyl phloroglucinol meroterpenoids from Eucalyptus tereticornis and their bioactivities. Tetrahedron 74:1540–1545

    Article  CAS  Google Scholar 

  • Liu F, Lu WJ, Li NP et al (2018c) Four new cinnamoyl-phloroglucinols from the leaves of Xanthostemon chrysanthus. Fitoterapia 128:93–96

    Article  CAS  PubMed  Google Scholar 

  • Lobo-Echeverri T, Rivero-Cruz JF, Su BN et al (2005) Constituents of the leaves and twigs of Calyptranthes pallens collected from an experimental plot in Southern Florida. J Nat Prod 68:577–580

    Article  CAS  PubMed  Google Scholar 

  • Lucas EJ, Harris SA, Mazine FF et al (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56:1105–1128

    Article  Google Scholar 

  • Lv L, Yulong Li Y, Zhang Y, Xie Z (2017) Biomimetic synthesis of myrtucommulone K, N and O. Tetrahedron 73:3691–3695

    Article  CAS  Google Scholar 

  • Ma SJ, Yu J, Wang DC et al (2018) Meroterpene-like compounds derived from β-caryophyllene as potent α-glucosidase inhibitors. Org Biomol Chem 16:9454–9460

    Article  CAS  PubMed  Google Scholar 

  • Mazine FF, Souza VC, Sobral M et al (2014) A preliminary phylogenetic analysis of Eugenia (Myrtaceae: Myrteae), with a focus on neotropical species. Kew Bull 69:1–14

    Article  Google Scholar 

  • Meng Q, Li BX, Xiao X (2018) Toward developing chemical modulators of Hsp60 as potential therapeutics. Front Mol Biosci 5:1–11

    Article  CAS  Google Scholar 

  • Morkunas M, Maier ME (2015) Alternative routes to the acylphloroglucinol rhodomyrtone. Tetrahedron 71:9662–9666

    Article  CAS  Google Scholar 

  • Morkunas M, Dube L, Götz F, Maier ME (2013) Synthesis of the acylphloroglucinols rhodomyrtone and rhodomyrtosone B. Tetrahedron 69:8559–8563

    Article  CAS  Google Scholar 

  • Müller H, Paul M, Hartmann D et al (2010) Total synthesis of myrtucommulone A. Angew Chem 49:2045–2049

    Article  CAS  Google Scholar 

  • Murillo AJ, Ruiz-PE LL et al (2012) Phylogenetic relationships in Myrceugenia (Myrtaceae) based on plastid and nuclear DNA sequences. Mol Phylogenet Evol 62:764–776

    Article  Google Scholar 

  • Nagata H, Inagaki Y, Yamamoto Y et al (2006) Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. Oral Microbiol Immunol 21:159–163

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti R, Analysis AE, Ferranti P (2014) Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J Microbiol Biotechnol 30:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti R, Salvatore MM, Ferranti P (2018) Structures and bioactive properties of myrtucommulones and related acylphloroglucinols from myrtaceae. Molecules 23:3370

    Article  PubMed Central  CAS  Google Scholar 

  • Niedenzu F (1893) Myrtaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol 3. Engelmann, Leipzig, pp 57–107

    Google Scholar 

  • Nisa K, Ito T, Matsui T, Kodama T, Morita H (2016a) New acylphloroglucinol derivatives from the leaves of Baeckea frutescens. Phytochem Lett 15:42–45

    Article  CAS  Google Scholar 

  • Nisa K, Ito T, Kodama T et al (2016b) New cytotoxic phloroglucinols, baeckenones D-F, from the leaves of Indonesian Baeckea frutescens. Fitoterapia 109:236–240

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Emura M, Kan Y et al (1992) Macrocarpals: HIV-RTase inhibitors of Eucalyptus globulus. Tetrahedron Lett 33:2983–2986

    Article  CAS  Google Scholar 

  • Ogur R (2014) Studies with Myrtus communis L.: anticancer properties. J Intercult Ethnopharmacol 3:135–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng LY, He J, Xu G et al (2011) Euglobal-IIIa, a novel acylphloroglucinol-sesquiterpene derivative from Eucalyptus robusta: absolute structure and cytotoxicity. Nat Prod Bioprospect 1:101–103

    Article  CAS  PubMed Central  Google Scholar 

  • Pérez Gutiérrez RM, Mitchell S, Vargas Solis R (2008) Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117:1–27

    Article  CAS  Google Scholar 

  • Pham TA, Mohammad IS, Vu VT et al (2018) Phloroglucinol derivatives from the fruits of Eucalyptus globulus and their cytotoxic activities. Chem Biodivers 15:e1800052

    Article  PubMed  CAS  Google Scholar 

  • Pham TA, Hu XJ, Huang XJ et al (2019) Phloroglucinols with Immunosuppressive activities from the fruits of Eucalyptus globulus. J Nat Prod 82:859–869

    Article  CAS  PubMed  Google Scholar 

  • Qin XJ, Yan H, Ni W et al (2016) Cytotoxic meroterpenoids with rare skeletons from Psidium guajava cultivated in temperate zone. Sci Rep 6:32748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Liu H, Qian Yu et al (2017a) Acylphloroglucinol derivatives from the twigs and leaves of Callistemon salignus. Tetrahedron 73:1803–1811

    Article  CAS  Google Scholar 

  • Qin XJ, Shu T, Yu Q et al (2017b) Cytotoxic acylphloroglucinol derivatives from Callistemon salignus. Nat Prod Bioprospect 7:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin XJ, Yu Q, Yan H et al (2017c) Meroterpenoids with antitumor activities from Guava (Psidium guajava). J Agric Food Chem 65:4993–4999

    Article  CAS  PubMed  Google Scholar 

  • Qin XJ, Zhi YE, Yan H et al (2018a) Baeckfrutones A-L, polymethylated phloroglucinol meroterpenoids from the twigs and leaves of Baeckea frutescens. Tetrahedron 74:6658–6666

    Article  CAS  Google Scholar 

  • Qin XJ, Jin LY, Yu Q et al (2018b) Eucalypglobulusals A-J, formyl-phloroglucinol–terpene meroterpenoids from Eucalyptus globulus fruits. J Nat Prod 81:2638–2646

    Article  CAS  PubMed  Google Scholar 

  • Qin XJ, Rauwolf TJ, Li PP et al (2019) Isolation and synthesis of novel meroterpenoids from Rhodomyrtus tomentosa: investigation of a reactive enetrione intermediate. Angew Chem 131:4335–4340

    Article  Google Scholar 

  • Radulovic NS, Randjielovic PJ, Stojanpvic NM et al (2015) Aboriginal bush foods: a major phloroglucinol from Crimson Bottlebrush flowers (Callistemon citrinus, Myrtaceae) displays strong antinociceptive and anti-inflammatory activity. Food Res Int 77:280–289

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  CAS  PubMed  Google Scholar 

  • Rosa A, Melis MP, Deiana M et al (2008) Protective effect of the oligomeric acylphloroglucinols from Myrtus communis on cholesterol and human low density lipoprotein oxidation. Chem Phys Lipid 155:16–23

    Article  CAS  Google Scholar 

  • Saising J, Ongsakul M, Voravuthikunchai SP (2011) Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: a potential strategy for the treatment of biofilm-forming staphylococci. J Med Microbiol 60:1793–1800

    Article  PubMed  Google Scholar 

  • Shang ZC, Yang MH, Jian KL et al (2016) 1H-NMR-guided isolation of formyl-phloroglucinol meroterpenoids from the leaves of Eucalyptus robusta. Chem Eur J 22:1–8

    Article  Google Scholar 

  • Shao M, Wang Y, Liu Z et al (2010) Psiguadials A and B, two novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Org Lett 12:5040–5043

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Wang Y, Jian YQ (2012) Guadial A and psiguadials C and D, three unusual meroterpenoids from Psidium guajava. Org Lett 14:5262–5265

    Article  CAS  PubMed  Google Scholar 

  • Singh IP, Bharate SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23:558–591

    Article  CAS  Google Scholar 

  • Singh IP, Umehara K, Asai T et al (1998) Phloroglucinol-monoterpene adducts from Eucalyptus grandis. Phytochemistry 47:1157–1159

    Article  CAS  Google Scholar 

  • Snow N, McFadden J, Evans TM et al (2011) Morphological and molecular evidence of polyphyly in Rhodomyrtus (Myrtaceae: Myrteae). Syst Bot 36:390–404

    Article  Google Scholar 

  • Soliman FM, Fathy MM, Salama MM et al (2014) Cytotoxic activity of acyl phloroglucinols isolated from the leaves of Eucalyptus cinereal F. Muell. ex Benth. cultivated in Egypt. Sci Rep 4:5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soomro S, Mesaik MA, Shaheen F et al (2019) Inhibitory effects of myrtucommuacetalone 1 (MCA-1) from Myrtus Communis on inflammatory response in mouse macrophages. Molecules 25:13

    Article  PubMed Central  CAS  Google Scholar 

  • Su Q, Dalal S, Goetz M et al (2016) Antiplasmodial phloroglucinol derivatives from Syncarpia glomulifera. Bioorg Med Chem 24:2544–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Gobu FR, Pan D et al (2016) Acylphloroglucinol derivatives from Decaspermum gracilentum and their antiradical and cytotoxic activities. J Asian Nat Prod Res 18:13–19

    Article  CAS  PubMed  Google Scholar 

  • Sytsma KJ, Litt A, Zjhra ML et al (2004) Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. Int J Plant Sci 165:S85–S105

    Article  CAS  Google Scholar 

  • Takasaki M, Konoshima T, Fujitani K et al (1990) Inhibitory effects of euglobals and their related compounds on Epstein–Barr virus activation. Chem Pharm Bull 38:2737–2738

    Article  CAS  Google Scholar 

  • Takasaki M, Konoshima T, Kozuka M et al (1994) Euglobal-In-1, a new euglobal from Eucaluptus incrassata. Chem Pharm Bull 42:2113–2116

    Article  CAS  Google Scholar 

  • Takasaki M, Konoshima T, Kozuka M, Tokuda H (1995) Anti-tumor-promoting activities of euglobals from Eucalyptus plants. Biol Pharm Bull 18:435–438

    Article  CAS  PubMed  Google Scholar 

  • Takasaki M, Konoshima T, Etoh H et al (2000) Cancer chemopreventive activity of euglobal-G1 from leaves of Eucalyptus grandis. Cancer Lett 155:61–65

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Liu H, Chen X, Yuan Y, Chen K, Qiu S (2015) Concise construction of the tricyclic core of bullataketals enabled by a biomimetic intermolecular (3 + 3) type cycloaddition. Org Lett 17(16):4050-4053

    Article  CAS  PubMed  Google Scholar 

  • Tang GH, Dong Z, Guo YQ et al (2017) Psiguajadials A-K: unusual Psidium meroterpenoids as phosphodiesterase-4 inhibitors from the leaves of Psidium guajava. Sci Rep 7:1–15

    Article  CAS  Google Scholar 

  • Tayeh M, Nilwarangoon S, Mahabusarakum W, Watanapokasin R (2017) Anti-metastatic effect of rhodomyrtone from Rhodomyrtus tomentosa on human skin cancer cells. Int J Oncol 50:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Thomas J, Narkowicz C, Peterson M et al (2009) Randomised controlled trial of the treatment of pastern dermatitis with a formulation containing kunzea oil. Vet Rec 164:619–623

    Article  CAS  PubMed  Google Scholar 

  • Thornhill AH, Macphail MK (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species. Rev Palaeobot Palynol 1:176–177

    Google Scholar 

  • Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogenet Evol 93:29–43

    Article  PubMed  Google Scholar 

  • Tian LW, Xu M, Li Y et al (2012) Phenolic compounds from the branches of Eucalyptus maiden. Chem Biodivers 9:123–130

    Article  CAS  PubMed  Google Scholar 

  • Tian LW, Xu M, Li XC et al (2014) Eucalmaidials A and B, phloroglucinol-coupled sesquiterpenoids from the juvenile leaves of Eucalyptus maideni. RSC Adv 4:21373–21378

    Article  CAS  Google Scholar 

  • Tretiakova I, Blaesius D, Maxia L et al (2008) Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 13:119–131

    Article  CAS  PubMed  Google Scholar 

  • Tuiwawa SH, Craven LA, Sam C, Crisp MD (2013) The genus Syzygium (Myrtaceae) in Vanuatu. Blumea 58:53–67

    Article  Google Scholar 

  • Udovicic F, Ladiges PY (2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the Eucalypts and related genera (Myrtaceae). Kew Bull 55:633–645

    Article  Google Scholar 

  • Umehara K, Singh IP, Etoh H et al (1998) Five phloroglucinol-monoterpene adducts from Eucalyptus grandis. Phytochemistry 49:1699–1704

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos TNC, Proença CEB, Ahmad B et al (2017) Myrteae phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Mol Phylogenet Evol 109:113–137

    Article  PubMed  Google Scholar 

  • Vuong QV, Chalmers AC, Bhuyan DJ, Bower MC, Scarlett CJ (2015) Botanical, phytochemical and anticancer properties of Eucaliptus species. Chem Biodivers 12:907–924

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhai WZ, Zou Y et al (2012) Eucalyptals D and E, new cytotoxic phloroglucinols from the fruits of Eucalyptus globulus and assignment of absolute configuration. Tetrahedron Lett 53:2654–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WCSP-World Checklist of Selected Plant Families (2019) <apps.kew.org/wcsp/>

  • Wiechmann K, Müller H, Huch V et al (2015) Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase. Eur J Med Chem 101:133–149

    Article  CAS  PubMed  Google Scholar 

  • Williams JE, Woinarski JCZ (1997) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Wilson PG (2011) Myrtaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Flowering Plants Eudicots, vol 10, Springer, pp 212–271

  • Wilson P, O’Brien M, Gadek PA, Quinn CJ (2001) Myrtaceae revisited: a reassessment of infrafamilial groups. Am J Bot 88:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Wilson P, O’Brien M, Heslewood M, Quinn C (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Syst Evol 251:3–19

    Article  Google Scholar 

  • Wiltshire RJE (2004) Eucalypts. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest science. Elsevier, Oxford, pp 1687–1699

    Chapter  Google Scholar 

  • Wu L, Luo J, Zhang Y et al (2015a) Isolation and biomimetic synthesis of (±)-calliviminones A and B, two novel Diels-Alder adducts, from Callistemon viminalis. Tetrahedron Lett 56:229–232

    Article  CAS  Google Scholar 

  • Wu L, Luo J, Wang XB et al (2015b) Six new hetero- and carbon-Diels-Alder adducts with unusual skeletons from the fruits of Callistemon viminalis. RSC Adv 5:93900–93906

    Article  CAS  Google Scholar 

  • Wu L, Wang X, Li R et al (2016) Callistiviminenes A-O: diverse adducts of β-triketone and sesqui- or monoterpene from the fruits of Callistemon viminalis. Phytochemistry 131:140–149

    Article  CAS  PubMed  Google Scholar 

  • Wu JW, Li BL, Tang C et al (2019) Callistemonols A and B, potent antimicrobial acylphloroglucinol derivatives with unusual carbon skeletons from Callistemon viminalis. J Nat Prod 82:1917–1922

    Article  CAS  PubMed  Google Scholar 

  • Xiang YQ, Liu HX, Zhao LY et al (2017) Callistemenonone A, a novel dearomatic dibenzofuran-type acylphloroglucinol with antimicrobial activity from Callistemon viminalis. Sci Rep 7:2363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie X, Lin W, Zhirong C et al (2019) Melaleucadines A and B: two rare benzylic phloroglucinol-terpene hybrids from Melaleuca leucadendron. Tetrahedron Lett 60:1011–1013

    Article  CAS  Google Scholar 

  • Xu W, Liu YY, Jin B et al (2018a) Chemical constituents of the notoginseng medicinal fungal substance. Chem Nat Compd 54:801–802

    Article  CAS  Google Scholar 

  • Xu SH, Xu W, Wang L et al (2018b) New phloroglucinol derivatives with protein tyrosine phosphatase 1B (PTP1B) inhibitory activities from Syzygium austroyunnanense. Fitoterapia 131:41–145

    Article  CAS  Google Scholar 

  • Xu J, Zhu HL, Zhang J et al (2019) Littordials A-E, novel formyl-phloroglucinol-β-caryophyllene meroterpenoids from the leaves of Psidium littorale. Org Chem Front 6:1667–1673

    Article  CAS  Google Scholar 

  • Yang SP, Zhang XW, Ai J et al (2012) Potent HGF/c-Met axis inhibitors from Eucalyptus globulus: the coupling of phloroglucinol and sesquiterpenoid is essential for the activity. J Med Chem 55:8183–8187

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Su JC, Lei XP et al (2018) Acylphloroglucinol derivatives from the leaves of Syzygium samarangense and their cytotoxic activities. Fitoterapia 129:1–6

    Article  CAS  PubMed  Google Scholar 

  • Yin S, Xue JJ, Fan CQ et al (2007) Eucalyptals A-C with a new skeleton isolated from Eucalyptus globulus. Org Lett 9:5549–5552

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Gan LS, Yang SP et al (2016) Eucarobustols A–I, conjugates of sesquiterpenoids and acylphloroglucinols from Eucalyptus robusta. J Nat Prod 79:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Chen C, Wang XB et al (2016) Rhodomyrtials A and B, two meroterpenoids with a triketone-sesquiterpene-triketone skeleton from Rhodomyrtus tomentosa: structural elucidation and biomimetic synthesis. Org Lett 18:4068–4071

    Article  CAS  PubMed  Google Scholar 

  • Zhang YB, Li W, Jiang L et al (2018) Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wu G, Huo L et al (2019) The first racemic total syntheses of the antiplasmodials Watsonianones A and B and Corymbone B. J Nat Prod. https://doi.org/10.1021/acs.jnatprod.8b01077

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Wu L, Xie J et al (2019) Rhodomyrtus tomentosa (Aiton.): a review of phytochemistry, pharmacology and industrial applications research progress. Food Chem 309:125715

    Article  PubMed  CAS  Google Scholar 

  • Zhi YE, Qi XJ, Liu H et al (2018) Structurally diverse polymethylated phloroglucinol meroterpenoids from Baeckea frutescens. Nat Prod Bioprospect 8:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou WL, Tan HB, Qiu SX et al (2017) Biomimetic total synthesis and structure confirmation of myrtucommulone K. Tetrahedron Lett 58:1817–1821

    Article  CAS  Google Scholar 

  • Zhu HL, Hu YW, Qu W et al (2019) Littordial F, a novel phloroglucinol meroterpenoid from the leaves of Psidium littorale. Tetrahedron Lett 60:1868–1870

    Article  CAS  Google Scholar 

  • Zhuang L, Chen LF, Zhang YB et al (2017) Watsonianone A from Rhodomyrtus tomentosa fruit attenuates respiratory-syncytial-virus-induced inflammation in vitro. J Agric Food Chem 65:3481–3489

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Mi Y, Chen W et al (2006) Alkyl phloroglucinol derivatives from Syzygium levinei and their differentiation-inducing activity. Planta Med 72:533–538

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigida D’Abrosca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celaj, O., Durán, A.G., Cennamo, P. et al. Phloroglucinols from Myrtaceae: attractive targets for structural characterization, biological properties and synthetic procedures. Phytochem Rev 20, 259–299 (2021). https://doi.org/10.1007/s11101-020-09697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09697-2

Keywords

Navigation