Skip to main content
Log in

Precursor criteria for noise-induced critical transitions in multi-stable systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Predicting noise-induced critical transitions between multi-stable states of a dynamical system is of uttermost importance in various fields. This paper investigates a tri-stable model with desirable, sub-desirable and undesirable states as a prototype class of real systems. Then, two critical transitions, from the desirable state to the sub-desirable one (CT1) and from the sub-desirable state to the undesirable one (CT2), induced by Gaussian white noise are uncovered. The new results show that the noise-induced CT1 and CT2 take place before the bifurcation point of the corresponding deterministic system and this phenomenon becomes earlier with increasing noise intensity. Therefore, some precursor criteria of the noise-induced CT1 and CT2 are further explored. Firstly, the largest Lyapunov exponent and the Shannon entropy are introduced into the prediction of the noise-induced CT1 and CT2 from a new perspective. It is found that both of them are more efficient compared to the classic variance and autocorrelation at-lag-1, and the Shannon entropy is more robust as compared to CT1 and CT2 under strong fluctuations. Moreover, a range of the bifurcation parameter, where noise-induced critical transitions may occur, is approximately quantified in the parameter-dependent basin of the unsafe regime. All of these results may provide some guidance for establishing more general precursor criteria of multiple noise-induced critical transitions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feudel, U.: Complex dynamics in multistable systems. Int. J. Bifurcat. Chaos 18(06), 1607–1626 (2008)

    Article  MathSciNet  Google Scholar 

  2. Feudel, U., Pisarchik, A.N., Showalter, K.: Multistability and tipping: from mathematics and physics to climate and brain-Minireview and preface to the focus issue. Chaos 28(3), 033501 (2018)

    Article  Google Scholar 

  3. Knorre, W., Bergter, F., Simon, Z.: Multistability in metabolic systems. Stud. Biophys. 49, 81–89 (1975)

    Google Scholar 

  4. Li, Y.G., Xu, Y., Kurths, J., Yue, X.L.: Lévy-noise-induced transport in a rough triple-well potential. Phys. Rev. E 94(4), 042222 (2016)

    Article  Google Scholar 

  5. Marmillot, P., Kaufman, M., Hervagault, J.F.: Multiple steady states and dissipative structures in a circular and linear array of three cells: numerical and experimental approaches. J. Chem. Phys. 95(2), 1206–1214 (1991)

    Article  Google Scholar 

  6. Yuan, R.S., Zhu, X.M., Wang, G.W., Li, S.T., Ao, P.: Cancer as robust intrinsic state shaped by evolution: a key issues review. Rep. Prog. Phys. 80(4), 042701 (2017)

    Article  Google Scholar 

  7. Power, S.B., Kleeman, R.: Multiple equilibria in a global ocean general circulation model. J. Phys. Oceanogr. 23(8), 1670–1681 (1993)

    Article  Google Scholar 

  8. Ditlevsen, P.D., Johnsen, S.J.: Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37(37), L19703 (2010)

    Google Scholar 

  9. Barnosky, A.D., et al.: Approaching a state shift in earth’s biosphere. Nature 486(7401), 52–58 (2012)

    Article  Google Scholar 

  10. Stolbova, V., Surovyatkina, E., Bookhagen, B., Kurths, J.: Tipping elements of the Indian monsoon: prediction of onset and withdrawal. Reophys. Res. Lett. 43(8), 3982–3990 (2016)

    Article  Google Scholar 

  11. Ma, J.Z., Xu, Y., Xu, W., Li, Y.G., Kurths, J.: Slowing down critical transitions via Gaussian white noise and periodic force. Sci. China Technol. Sc. 62(12), 2144–2152 (2019)

    Article  Google Scholar 

  12. Dakos, V., et al.: Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7(7), e41010 (2012)

    Article  Google Scholar 

  13. Scheffer, M., et al.: Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Article  Google Scholar 

  14. Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9(3), 311–318 (2006)

    Article  Google Scholar 

  15. Dakos, V., et al.: Slowing down as an early warning signal for abrupt climate change. PNAS 105(38), 14308–14312 (2008)

    Article  Google Scholar 

  16. Wissel, C.: A universal law of the characteristic return time near thresholds. Oecologia 65(1), 101–107 (1984)

    Article  Google Scholar 

  17. Guttal, V., Jayaprakash. C.: Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11(5), 450-460 (2008)

  18. Brock, W.A., Carpenter, S.R.: Interacting regime shifts in ecosystems: implication for early warnings. Ecol. Monogr. 80(3), 353–367 (2010)

    Article  Google Scholar 

  19. Dakos, V., van Nes, E.H., Donangelo, R., Fort, H., Scheffer, M.: Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3(3), 163–174 (2010)

    Article  Google Scholar 

  20. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413(6856), 591–596 (2001)

    Article  Google Scholar 

  21. Moreau, L., Sontag, E.: Balancing at the border of instability. Phys. Rev. E 68(2), 020901 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kuehn, C.: A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12), 1020–1035 (2011)

    Article  MATH  Google Scholar 

  23. Ma, J.Z., Xu, Y., Kurths, J., Wang, H.Y., Xu, W.: Detecting early-warning signals in periodically forced systems with noise. Chaos 28(11), 113601 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hramov, A.E., Koronovskii, A.A., Kurovskaya, M.K.: Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise. Phys. Rev. E 78(3), 036212 (2008)

    Article  MathSciNet  Google Scholar 

  25. Farazmand, M., Sapsis, T.P.: Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems. Phys. Rev. E 94(3), 032212 (2016)

    Article  Google Scholar 

  26. Nazarimehr, F., Rajagopal, K., Khalaf, A.J.M., Alsaedi, A., Pham, V.T., Hayat, T.: Investigation of dynamical properties in a chaotic flow with one unstable equilibrium: circuit design and entropy analysis. Chaos, Solitons Fractals 115, 7–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9(2), 89–92 (2013)

    Article  Google Scholar 

  28. Serdukova, L., Zheng, Y.Y., Duan, J.Q., Kurths, J.: Stochastic basins of attraction for metastable states. Chaos 26(7), 073117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, J.Z., Xu, Y., Li, Y.G., Tian, R.L., Kurths, J.: Predicting noise-induced critical transitions in bistable systems. Chaos 29(8), 081102 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ao, P., Galas, D., Hood, L., Zhu, X.M.: Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses 70(3), 678–684 (2008)

    Article  Google Scholar 

  31. Wang, Z.Q., Xu, Y., Yang, H.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sc. 59(3), 371–375 (2016)

    Article  Google Scholar 

  32. Xu, Y., Zan, W.R., Jia, W.T., Kurths, J.: Path integral solutions of the governing equation of SDEs excited by Lévy white noise. J. Comp. Phys. 394(1), 41–55 (2019)

    Article  Google Scholar 

  33. Gardiner, C.W., et al.: Handbook of Stochastic Methods. Springer, Berlin (1985)

    Google Scholar 

  34. Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H., Sprott, J.C.: Can Lyapunov exponent predict critical transitions in biological systems? Nonlinear Dyn. 88(2), 1493–1500 (2017)

    Article  MathSciNet  Google Scholar 

  35. Nazarimehr, F., Jafari, S., Golpayegani, S.M.R.H., Perc, M., Sprott, J.C.: Predicting tipping points of dynamical systems during a period-doubling route to chaos. Chaos 28(7), 073102 (2018)

    Article  MathSciNet  Google Scholar 

  36. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, Part I: Theory. Meccanica 15, 9–20 (1980)

    Article  MATH  Google Scholar 

  37. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, Part II: numerical application. Meccanica 15, 21–30 (1980)

    Article  MATH  Google Scholar 

  38. Venkatramani, J., Sarkar, S., Gupta, S.: Investigations on precursor measures for aeroelastic flutter. J. Sound Vib. 419, 318–336 (2018)

    Article  Google Scholar 

  39. Wu, J., Xu, Y., Wang, H.Y., Kurths, J.: Information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos 27(6), 063105 (2017)

    Article  MathSciNet  Google Scholar 

  40. Gao, T., Duan, J.Q., Li, X.F., Song, R.M.: Mean exit time and escape probability for dynamical systems driven by Lévy noises. SIAM J. Sci. Comput. 36(3), A887–A906 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China under Grant No. 11772255, the Fundamental Research Funds for the Central Universities, the Shaanxi Project for Distinguished Young Scholars, the Research Funds for Interdisciplinary Subject of Northwestern Polytechnical University and Shaanxi Provincial Key R&D Program 2020KW-013 and 2019TD-010. Y. Li thanks the China Postdoctoral Science Foundation funded project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. This work was original research, has not been published previously, and not under consideration for publication elsewhere in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xu, Y., Li, Y. et al. Precursor criteria for noise-induced critical transitions in multi-stable systems. Nonlinear Dyn 101, 21–35 (2020). https://doi.org/10.1007/s11071-020-05746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05746-9

Keywords

Navigation