Skip to main content
Log in

Relationship Between Body Mass and Forewing Length in Neotropical Ichneumonidae (Insecta: Hymenoptera)

  • Systematics, Morphology and Physiology
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Biomass is an important indicator of various ecological factors in insect populations and communities. Although the utility of this variable is proven, it is usually dismissed in ecological studies, generally, because of the difficulty of measuring it. Considering that insect biomass is apparently declining worldwide, here, we aimed to test the accuracy of forewing length as an estimator of body mass in Neotropical Ichneumonidae to help in monitoring insect biomass. Forewing length and dry body mass were measured in 728 individuals from distinct localities in Venezuela and Ecuador. A clear log-linear relationship existed between the two variables, and a log-linear regression had significant and strong predictive power of mass based on wing length. To derive the final values of mass from predictions made using our equation, we used an exponential transformation. We present an R function for predicting mass from wing length. We consider our findings applicable to many Neotropical species of Ichneumonidae, and helpful especially when specimens are measured in dry collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Aguiar AP, Santos BF (2010) Discovery of potent, unsuspected sampling disparities for malaise and Möricke traps, as shown for Neotropical Cryptini (Hymenoptera, Ichneumonidae). J Insect Conserv 14:199–206

    Google Scholar 

  • Barros LM, Martins RT, Ferreira-Keppler RL, Gutjahr ALN (2018) Fresh and dry mass estimates of Hermetia illucens (Linnaeus, 1758) (Diptera: Stratyomidae) larvae associated with swine decomposition in urban area of Central Amazonia. Neotrop Entomol 47:478–483

    CAS  PubMed  Google Scholar 

  • Benke A, Huryn A, Smock L, Wallace J (1999) Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J N Am Benthol Soc 18:308–343

    Google Scholar 

  • Brady CJ, Noske RA (2006) Generalised regressions provide good estimates of insect and spider biomass in the monsoonal tropics of Australia. Aust J Entomol 45:187–191

    Google Scholar 

  • Brito JG, Martins RT, Soares KM, Hamada N (2015) Biomass estimation of Triplectides egleri Sattler (Trichoptera, Leptoceridae) in a stream at Ducke reserve, Central Amazonia. Rev Bras Entomol 59:332–336

    Google Scholar 

  • Burgherr P, Meyer EI (1997) Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Arch Hydrobiol 139:101–112

    Google Scholar 

  • Carron A (2007) Correlation between wing measurements and dry body weight in male and female Ochlerotatus (Ochlerotatus) caspius (Pallas, 1771) (Diptera: Culicidae). Eur Mosq Bull 24:4–8

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org

    Google Scholar 

  • Danforth BN (1989) The evolution of hymenopteran wings: the importance of size. J Zool 218:247–276

    Google Scholar 

  • De Sassi C, Tylianakis JM (2012) Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS One 7(7):e40557

    PubMed  PubMed Central  Google Scholar 

  • Feest A, Aldred TD, Jedamzik K (2010) Biodiversity quality: a paradigm for biodiversity. Ecol Indic 10:1077–1082

    Google Scholar 

  • Fraley C (2018). HDoutliers: Leland Wilkinson’s algorithm for detecting multidimensional outliers. R package version 1. https://CRAN.R-project.org/package=HDoutliers

  • Ganihar SR (1997) Biomass estimates of terrestrial arthropods based on body length. J Biosci 22:219–224

    Google Scholar 

  • Gauld I, Fitton MG (1987) Sexual dimorphism in Ichneumonidae: a response to Hurlbutt. Biol J Linn Soc 31:291–300

    Google Scholar 

  • Gilbert JDJ (2011) Insect dry weight: shortcut to a difficult quantity using museum specimens. Fla Entomol 94:964–970

    Google Scholar 

  • Gowing G, Recher HF (1984) Length-weight relationships for invertebrates from forests in South-Eastern New South Wales. Aust J Entomol 9:5–8

    Google Scholar 

  • Greenewalt CH (1962) Dimensional relationships for flying animals. Smithsonian Miscellaneous Collections 144:1–46

    Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809

    PubMed  PubMed Central  Google Scholar 

  • Heino J, Alahuhta J, Fattorini S (2019) Macroecology of ground beetles: species richness, range size and body size show different geographical patterns across a climatically heterogeneous area. J Biogeogr 46:2548–2557. https://doi.org/10.1111/jbi.13693

    Article  Google Scholar 

  • Heleno RH, Ceia RS, Ramos JA, Memmott J (2008) Effects of alien plants on insect abundance and biomass: a food-web approach. Conserv Biol 23:410–419

    PubMed  Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Google Scholar 

  • Jervis MA, Heimpel GE, Ferns PN, Harvey JA, Kidd NAC (2001) Life-history strategies in parasitoid wasps: a comparative analysis of “ovigeny”. J Anim Ecol 70:442–458

    Google Scholar 

  • Johnson MD, Strong AM (2000) Length-weight relationships of Jamaican arthropods. Entomol News 111:270–281

    Google Scholar 

  • Khatri D, He XZ, Wang Q (2009) Mating behavior and egg maturation in Diadegma semiclausum Hellen (Hymenoptera: Ichneumonidae). N Z Plant Prot 62:174–178

    Google Scholar 

  • King BH, Burgess ER, Colyott KL (2018) Sexual size and shape dimorphism in three species of parasitoid wasps with burrowing females: Spalangia endius, Spalangia nigroaenea, and Spalangia nigra (Hymenoptera: Pteromalidae). J Insect Sci 18(5):1–6

    Google Scholar 

  • Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci U S A 115:E10397–E10406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macgregor CJ, Williams JH, Bell JR, Thomas CD (2019) Moth biomass increases and decreases over 50 years in Britain. Nature Ecol Evol 3:1645–1649

    Google Scholar 

  • Martins RT, Melo AS, Gonçalves JF Jr, Hamada N (2014) Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31:337–342

    Google Scholar 

  • Mazón M (2016) Taking shortcuts to measure species diversity: parasitoid Hymenoptera subfamilies as surrogates of species richness. Biodivers Conserv 25:67–76

    Google Scholar 

  • Mazón M, Alvarez P, Santin J, Aguirre N (2017) Insectos vs suelo: la importancia de elegir indicadores para el monitoreo de la restauración ecológica. In: Mazón M, Maita J, Aguirre N (eds) Restauración del paisaje en Latinoamérica: experiencias y perspectivas futuras. Memorias Primer Congreso Ecuatoriano de Restauración del Paisaje. Ediloja, Loja, pp 144–158

    Google Scholar 

  • Miller WE (1977) Wing measure as a size index in Lepidoptera: the family Olethreutidae. Ann Entomol Soc Am 70:253–256

    Google Scholar 

  • Miller WE (1997) Body weight as related to wing measure in hawkmoths (Sphingidae). J Lepid Soc 51:91–92

    Google Scholar 

  • Orihuela-Torres A, Ordóñez-Delgado L, Brito J, López F, Mazón M, Freile JF (2018) Ecología trófica del búho terrestre Athene cunicularia punensis (Strigiformes: Strigidae) en el archipiélago de Jambelí, provincia de El Oro, suroeste de Ecuador. Rev Peru Biol 25:123–130

    Google Scholar 

  • Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond B 58:240–242

    Google Scholar 

  • Petersen V, Marchi MG, Natal D, Marrelli MT, Barbosa AC, Suesdek L (2016) Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus. Rev Soc Bras Med Trop 49:508–511

    PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    PubMed  Google Scholar 

  • Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcok BA, Isaac NJB (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018

    PubMed  PubMed Central  Google Scholar 

  • Radtke MG, Williamson GB (2005) Volume and linear measurements as predictors of dung beetle (Coleoptera: Scarabaeidae) biomass. Ann Entomol Soc Am 98:548–551

    Google Scholar 

  • Rasnitsyn AP (1978) Predislovie In: Heinrich GH (editor) Vostochnopalearkticheskie pereponchatokrylye nasekomye podsemeistva Ichneumoninae. Leningrad: Nauka Press, Leningradskoe otdelenie: 3-5

  • Rozen A, Sobczyk L, Weiner J (2015) The effect of pre-analytical treatment on the results of stoichometric measurements in invertebrates. Appl Entomol Zool 50:393–403

    PubMed  PubMed Central  Google Scholar 

  • Saint-Germain M, Buddle CM, Larrivée M, Mercado A, Motchula T, Reichert E, Sackett TE, Sylvain Z, Webb A (2007) Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? J Appl Ecol 44:330–339

    Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Google Scholar 

  • Santos A (2013) Indicating assemblage vulnerability and resilience in the face of climate change by means of adult ground beetle length-weight allometry over elevation strata in Tenerife (Canary Islands). Ecol Indic 34:204–209

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Shortall CR, Moore A, Smith E, Hall MJ, Woiwod IP, Harrington R (2009) Long-term changes in the abundance of flying insects. Insect Conserv Diver 2:251–260

    Google Scholar 

  • Smock LA (1980) Relationships between body size and biomass of aquatic insects. Freshw Biol 10:375–383

    Google Scholar 

  • Townes HK (1969) The genera of Ichneumonidae, Part 1. Ann Arbor: The American Entomological Institute

  • Townes HK (1972) A light-weight malaise trap. Entomol News 18:239–247

    Google Scholar 

  • Yang LH, Gratton C (2014) Insects as drivers of ecosystem processes. Curr Opin Insect Sci 2:26–32

    PubMed  Google Scholar 

  • Yu DS, van Achterberg K, Horstmann K (2012) World Ichneumonoidea 2011. Taxapad 2012. Database on flash-drive. Ottawa, Ontario, Canada

Download references

Acknowledgments

The authors would like to thank Ingrit Correa and Antonia García, who gave us access to the Venezuelan and Ecuadorian labs, respectively, and to Juan Dario Quinde and Jose Reátegui for helping with the measurements. We also would like to thank Jorge Soberón and A. Townsend Peterson for help in reviewing the statistical methods used and in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors designed the study. MM collected the data, and CNP and MEC performed the data analyses. All the authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to M Mazón.

Additional information

Edited by Anne-Nathalie Volkoff – INRA

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Anne-Nathalie Volkoff – INRA

Electronic Supplementary Material

ESM 1

(DOCX 48.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazón, M., Nuñez-Penichet, C. & Cobos, M.E. Relationship Between Body Mass and Forewing Length in Neotropical Ichneumonidae (Insecta: Hymenoptera). Neotrop Entomol 49, 713–721 (2020). https://doi.org/10.1007/s13744-020-00784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-020-00784-9

Keywords

Navigation