Skip to main content
Log in

Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was investigated using MTT assay. Bisbenzazole derivatives showed significant antiproliferative activity against all the four tested cancer cell lines. Among the various bisbenzazole derivatives, bisbenzoxazole derivatives exhibited the most promising anticancer activity followed by bisbenzimidazole and bisbenzothiazole derivatives. All the derivatives were found to be less toxic as compared to methotrexate (positive control) in normal human cells, indicating selective and efficient antiproliferative activity of these bisbenzazole derivatives. The structure–activity relationships of heteroaromatic systems and linkers present in bisbenzazole derivatives were analyzed in detail. In silico ADMET prediction revealed that bisbenzazole is a drug-like small molecule with a favorable safety profile. Compound 31 is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from methotrexate.

Graphic abstract

Twenty-one bisbenzoxazole derivatives have been designed synthesized and evaluated to be an antiproliferative activity against four human tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Spasov AA, Yozhitsa IN, Bugaeva LI (1999) Benzimidazole derivatives: spectrum of pharmacological activity and toxicological properties. Pharm Chem J 33:232–243. https://doi.org/10.1007/BF02510042

    Article  CAS  Google Scholar 

  2. Gupta M, Paul S, Gupta R (2009) General characteristics and applications of microwaves in organic synthesis. Acta Chim Slov 56:749–764

    CAS  Google Scholar 

  3. Piscitelli F, Ballatore C, Smith A (2010) Solid phase synthesis of 2-aminobenzothiazoles. Bioorg Med Chem Lett 20:644–648. https://doi.org/10.1016/j.bmcl.2009.11.055

    Article  CAS  PubMed  Google Scholar 

  4. Balakumar C, Kishore DP, Rao KV, Narayana BL, Rajwinder K, Rajkumar V, Rao AR (2012) Design, microwave-assisted synthesis and in silico docking studies of new 4H-pyrimido[2,1-b]benzothiazole-2-arylamino-3-cyano-4-ones as possible adenosine A2B receptor antagonists. Indian J Chem 51B:1105–1113

    CAS  Google Scholar 

  5. Patil A, Ganguly S, Surana S (2008) A systematic review of benzimidazole derivatives as an antiulcer agent. RJC 1:447–460

    CAS  Google Scholar 

  6. Narasimhan B, Sharma D, Kumar P (2012) Benzimidazole: a medicinally important heterocyclic moiety. Med Chem Res 21:269–283. https://doi.org/10.1007/s00044-010-9533-9

    Article  CAS  Google Scholar 

  7. Kohli P, Srivastava SD, Srivastava SK (2007) Synthesis and biological activity of mercaptobenzoxazole based thiazolidinones and their arylidenes. J Chin Chem Soc 54:1003–1010. https://doi.org/10.1002/jccs.200700144

    Article  CAS  Google Scholar 

  8. Sivakumar R, Pradeepchandran R, Jayaveera KN, Kumarnallasivan P, Vijaianand PR, Venkatnarayanan R (2011) Benzimidazole: an attractive pharmacophore in medicinal chemistry. Int J Pharm Sci Res 3:19–31

    CAS  Google Scholar 

  9. Deb PK, Kaur R, Chandrasekaran B, Bala M, Gill D, Kaki VR, Akkinepalli RR, Mailavaram R (2014) Synthesis, anti-inflammatory evaluation, and docking studies of some new thiazole derivatives. Med Chem Res 23:2780–2792. https://doi.org/10.1007/s00044-013-0861-4

    Article  CAS  Google Scholar 

  10. Palmer FJ, Trigg RB, Warrington JV (1971) Benzothiazolines as antituberculous agents. J Med Chem 14:248–251. https://doi.org/10.1021/jm00285a022

    Article  CAS  PubMed  Google Scholar 

  11. Hadden MK, Blagg BS (2008) Dimeric approaches to anti-cancer chemotherapeutics. Anticancer Agents Med Chem 8:807–816. https://doi.org/10.2174/187152008785914743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueki M, Ueno K, Miyadoh S, Abe K, Shibata K, Taniguchi M, Oi S (1993) A novel cytotoxic metabolite from Streptomyces sp. 517-02. J Antibiot 46:1089–1094. https://doi.org/10.7164/antibiotics.46.1089

    Article  CAS  Google Scholar 

  13. Sato S, Kajiura T, Noguchi M, Takehana K, Kobayashi T, Tsuji T (2001) A new cytotoxic benzoxazole derivative produced by Streptomyces sp. J Antibiot 54:102–104. https://doi.org/10.7164/antibiotics.54.102

    Article  CAS  Google Scholar 

  14. Jenkins TC (2000) Targeting multi-stranded DNA structures. Curr Med Chem 7:99–115. https://doi.org/10.2174/0929867003375551

    Article  CAS  PubMed  Google Scholar 

  15. Singh MP, Joseph T, Kumar S, Bathini Y, Lown JW (1992) Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem Res Toxicol 5:597–607. https://doi.org/10.1021/tx00029a003

    Article  CAS  PubMed  Google Scholar 

  16. Racane L, Kraljevic PS, Ratkaj I, Stepanic V, Pavelic K, Tralic-Kulenovic V, Karminski-Zamola G (2012) Synthesis and antiproliferative evaluation of some new amidino-substituted bis-benzothiazolyl-pyridines and pyrazine. Eur J Med Chem 55:108–116. https://doi.org/10.1016/j.ejmech.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Kumbhare RM, Dadmal T, Kosurkar U, Sridhar V, Rao JV (2012) Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: a novel class of cytotoxic agents. Bioorg Med Chem Lett 22:453–455. https://doi.org/10.1016/j.bmcl.2011.10.106

    Article  CAS  PubMed  Google Scholar 

  18. Gravatt GL, Baguley BC, Wilson WR, Denny WA (1994) DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogs of pibenzimol (Hoechst 33258). J Med Chem 37:4338–4345. https://doi.org/10.1021/jm00051a010

    Article  CAS  PubMed  Google Scholar 

  19. Shi Z, Zhao D, Huang Y, Du Y, Cao X, Gong Z, Zhao R, Li J (2012) Discovery, synthesis, and evaluation of small-molecule signal transducer and activator of transcription 3 inhibitors. Chem Pharm Bull 60:1574–1580. https://doi.org/10.1248/cpb.c12-00745

    Article  CAS  Google Scholar 

  20. McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of the (cell) line: methods for the study of apoptosis in vitro. Methods in Cell Biology: Cell Death 46:153–185. https://doi.org/10.1016/s0091-679x(08)61929-9

    Article  CAS  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  22. van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245. https://doi.org/10.1007/978-1-61779-080-5_20

    Article  CAS  PubMed  Google Scholar 

  23. Lan P, Romero FA, Wodka D, Kassick AJ, Dang Q, Gibson T, Cashion D, Zhou G, Chen Y, Zhang X, Zhang A, Li Y, Trujillo ME, Shao Q, Wu M, Xu S, He H, MacKenna D, Staunton J, Chapman KT, Weber A, Sebhat IK, Makara GM (2017) Hit-to-lead optimization and discovery of 5-((5-([1, 1′-Biphenyl]-4-yl)-6-chloro-1 H-benzo [d] imidazol-2-yl) oxy)-2-methylbenzoic Acid (MK-3903): A novel class of benzimidazole-based activators of AMP-activated protein kinase. J Med Chem 60:9040–9052. https://doi.org/10.1021/acs.jmedchem.7b01344

    Article  CAS  PubMed  Google Scholar 

  24. Elagab HA, Alt HG (2015) Structure–property-relationship studies with ethylene polymerization catalysts of Ti, Zr and V containing heterocyclic ligands. Inorgan Chim Acta 437:26–35. https://doi.org/10.1016/j.ica.2015.08.002

    Article  CAS  Google Scholar 

  25. Qian J, Zhang Y, Yin X (2012) The synthesis and study of bis(1-octylbenzimidazoi-2-yl)alkane oil-soluble corrosion inhibitor. Huaxue Tongbao 75:88–91

    CAS  Google Scholar 

  26. Heinrich J, Koenig NF, Sobottka S, Sarkar B, Kulak N (2019) Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: impact on redox chemistry and oxidative DNA cleavage activity. J Inorg Biochem 194:223–232. https://doi.org/10.1016/j.jinorgbio.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz U, Kucukbay H (2016) Synthesis and characterization of novel phosphoramidates containing benzimidazole moiety. Phosphorus, Sulfur Silicon Relat Elem 191:140–143. https://doi.org/10.1080/10426507.2015.1067209

    Article  CAS  Google Scholar 

  28. Inamdar SM, More VK, Mandal SK (2013) CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Lett 54:579–583. https://doi.org/10.1016/j.tetlet.2012.11.091

    Article  CAS  Google Scholar 

  29. Berends HP, Stephan DW (1984) Copper (I) and copper (II) complexes of biologically relevant tridentate ligands. Inorgan Chim Acta 93:173–178. https://doi.org/10.1016/S0020-1693(00)88159-1

    Article  CAS  Google Scholar 

  30. Mao S, Shen K, Shi X, Wu H, Han X, Li C, Huang G (2018) Synthesis, crystal structure and biological activity of two binuclear Ag(I) complexes with bis-benzimidazole thioether ligands. Inorgan Chim Acta 471:82–90. https://doi.org/10.1016/j.ica.2017.10.038

    Article  CAS  Google Scholar 

  31. Rao SS, Reddy CV, Dubey PK (2014) Synthesis of N,N-disubstitutedbisbenzimidazolesulphides of Potential Pharmacological Interest. JCHPS 6:1199–1204

    Google Scholar 

  32. Xu Y, Wu H, Zhang H, Aderinto SO, Yang Z (2016) Synthesis, crystal structures, and DNA-binding studies of two silver (I) complexes with 1, 3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane. J Coord Chem 69:2988–2998. https://doi.org/10.1080/00958972.2016.1218484

    Article  CAS  Google Scholar 

  33. Mao S, Shen K, Shi X, Xu Y, Wu H (2017) Two silver (I) complexes with bis (benzimidazole)-2-oxopropane ligands: syntheses, crystal structures and DNA binding studies. APPl 31:e3747. https://doi.org/10.1002/aoc.3747

    Article  CAS  Google Scholar 

  34. Wu HL, Yun RR, Wang KT, Li K, Huang XC, Sun T (2010) Synthesis, crystal structure, and spectrum properties of Cobalt (II) complexes based on tridentate 1, 3-bis(benzimidazol-2-yl)-2-oxopropane ligand and derivative. Z Anorg Allg Chem 636:629–633. https://doi.org/10.1002/zaac.200900298

    Article  CAS  Google Scholar 

  35. Feng R, Hou Y, Wu Z, Yang Y, Nie F (2015) Structures and fluorescent properties of Cadmium (II) complexes with 1D and 2D Structures based on tridentate benzimidazole ligands. Z Anorg Allg Chem 641:1918–1925. https://doi.org/10.1002/zaac.201400511

    Article  CAS  Google Scholar 

  36. Kopel P, Wawrzak D, Langer V, Cihalova K, Chudobova D, Vesely R, Adam V, Kizek R (2015) Biological activity and molecular structures of bis(benzimidazole) and trithiocyanurate complexes. Molecules 20:10360–10376. https://doi.org/10.3390/molecules200610360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen B, Morlanes N, Adogla E, Takanabe K, Rodionov VO (2016) An efficient and stable hydrophobic molecular cobalt catalyst for water electro-oxidation at neutral pH. ACS Catal 6:4647–4652. https://doi.org/10.1021/acscatal.6b01237

    Article  CAS  Google Scholar 

  38. Dauer D, Stalke D (2014) Heterocyclic substituted methanides as promising alternatives to the ubiquitous nacnac ligand. Dalton Trans 43:14432–14439. https://doi.org/10.1039/C4DT01008F

    Article  CAS  PubMed  Google Scholar 

  39. Kretsch J, Kreyenschmidt A, Herbst-Irmer R, Stalke D (2018) Alkali metal complexes based on bisheterocyclomethanide ligands. Dalton Trans 47:12606–12612. https://doi.org/10.1039/C8DT01678J

    Article  CAS  PubMed  Google Scholar 

  40. Kumar R, Selvam C, Kaur G, Chakraborti AK (2005) Microwave-assisted direct synthesis of 2-substituted benzoxazoles from carboxylic acids under catalyst and solvent-free conditions. Synlett 9:1401–1404. https://doi.org/10.1055/s-2005-868509

    Article  CAS  Google Scholar 

  41. Shirakawa Y, Masuda T (2013) Coupling agents for rubber/carbon black and rubber compositions containing them. PCT Int Appl WO 2013015425

  42. Cakir B, Ucucu U, Buyukbingol E, Abbasoglu U (1989) Benzoxazoles: bis-benzoxazole derivatives, synthesis, antifungal activities and QSARs. J Faculty Pharm Gazi Uni 6:15–21

    CAS  Google Scholar 

  43. Terao H, Ono Y, Ito Y, Isogai M, Hamada T, Imanishi, Tsunoda A (1991) Organic nonlinear optical device. Japanese Kokai Tokkyo Koho JP 03188425

  44. Hao Y, Chen Y (2016) Excited-state intramolecular single and double proton transfer emission of 2,5-bis(benzoxazol-2-yl) thiophene-3,4-diol. Dyes Pigme 129:186–190. https://doi.org/10.1016/j.dyepig.2016.03.002

    Article  CAS  Google Scholar 

  45. Hao Y, Zheng M, Chen Y (2014) A highly stable and water-soluble fluorescent dye for fluorescence imaging of living cells. J Mater Chem B 2:7369–7374. https://doi.org/10.1039/C4TB01210K

    Article  CAS  PubMed  Google Scholar 

  46. Zhou H, Wang L, Yin B (2004) Synthesis of bis(2-benzoxazolylmethyl) ether by dry reaction under microwave irradiation. Huaxue Shiji 26:308–311

    CAS  Google Scholar 

  47. Alt H, Elagab H, Al-Humydi A (2011) Ethylene Polymerisation. PCT Int Appl WO 2011088990

  48. Chakraborti AK, Selvam C, Kaur G, Bhagat S (2004) An efficient synthesis of benzothiazoles by direct condensation of carboxylic acids with 2-aminothiophenol under microwave irradiation. Synlett 5:851–855. https://doi.org/10.1055/s-2004-820012

    Article  CAS  Google Scholar 

  49. Katritzky AR, Liang D, Fan W (1988) Bridged cyanine dyes. Part 2 [1].1-(N-methyl-2-benzothiazolylinio)-3-(N-methyl-2-benzothiazolylene) and 1-(N-methyl-4-pyridinio)-3-(N-methyl-4-pyridylene)cyclopenta-1,4-dienes with fused rings. J Heterocycl Chem 25:1315–1319. https://doi.org/10.1002/jhet.5570250509

    Article  CAS  Google Scholar 

  50. Rai C, Braunwarth JB (1961) Synthesis of bisbenzothiazoles1. J Org Chem 26:3434–3436. https://doi.org/10.1021/jo01067a100

    Article  CAS  Google Scholar 

  51. Strasser CE, Jongh LAD, Raubenheimer HG, Cronje S (2011) 2,2′-(Sulfanediyldimethylene)bis(1,3-benzothiazole). Acta Cryst E 67:o622. https://doi.org/10.1107/S1600536811004478

    Article  CAS  Google Scholar 

  52. Sih JC, Graber DR (1983) 2-Mercapto-1,3-benzoxazole: a useful reagent for the preparation of symmetrical and unsymmetrical sulphides. J Org Chem 48:3842–3845. https://doi.org/10.1021/jo00169a058

    Article  CAS  Google Scholar 

  53. Das SK, Mathur P (1999) Copper (II) complexes with bis thiazole based ligands: spectral, cyclic voltammetric and EPR studies. Indian J Chem A 38A:1277–1282

    CAS  Google Scholar 

  54. Ushenko IK (1952) α,γ-Epoxythiacarbocyanines. I Zh Obshch Khim 22:711–715

    CAS  Google Scholar 

  55. Finn MG, Rodionov VO (2009) Ligands for copper-catalyzed azide-alkyne cycloaddition reactions. PCT Int Appl WO 2009038685

  56. Buehrdel G, Beckert R, Herzigova P, Petrlikova E, Schuch D, Birckner E, Goerls H (2009) A new synthesis of push–pull pyrroles, their oxidation to stable 3H-pyrroles and an unexpected anellation reaction. Eur J Org Chem 20:3404–3412. https://doi.org/10.1002/ejoc.200900295

    Article  CAS  Google Scholar 

  57. Akpa SJ, Say MV, Zoakouma SPR, Fante B, Sissouma D, Adjou A (2016) Synthesis of 2-(benzylthio) benzimidazole, 2-[(benzimidazol-2-yl)methylthio]benzimidazole and structural analogues against Haemoncus contortus. AFR J Pharm Pharmacol 10:670–680. https://doi.org/10.5897/AJPP2016.4557

    Article  CAS  Google Scholar 

  58. Bouchouit M, Said M, Kara M, Bouacida S, Merazig H, Kacem-Chaouche N, Chibani A, Zouchoune B, Belfaitah A, Bouraiou A (2016) Synthesis, X-ray structure, theoretical investigation, corrosion inhibition and antimicrobial activity of benzimidazole thioether and theirs metal complexes. Polyhedron 119:248–259. https://doi.org/10.1016/j.poly.2016.08.045

    Article  CAS  Google Scholar 

  59. Zubarovskii VM (1951) 2-(Hydroxymethyl)benzothiazole and its transformations. Zh Obshch Khim 21:2055–2064

    CAS  Google Scholar 

  60. Sabina XJ, Karthikeyan J, Velmurugan G, Tamizh MM, Shettyd AN (2017) Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. New J Chem 41:4096–4109. https://doi.org/10.1039/C7NJ00265C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Scientific and Technological Research Council of Turkey (TUBITAK, Grant Number: 115S190) and Mersin University (Project Number: 2018-1-TP3-2911) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Serdar Burmaoglu or Oztekin Algul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersan, R.H., Alagoz, M.A., Ertan-Bolelli, T. et al. Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis. Mol Divers 25, 2247–2259 (2021). https://doi.org/10.1007/s11030-020-10115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10115-0

Keywords

Navigation