Skip to main content
Log in

Non-enzymatic glucose sensing with hybrid nanostructured Cu2O-ZnO prepared by single-step coelectrodeposition technique

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conjugated hybrid nanostructured Cu2O-ZnO has been grown via the single-step coelectrodeposition (CED) technique. Though ZnO nanostructures grown alone by electrodepostion technique do not exhibit any glucose sensing, the CED-grown Cu2O-ZnO nanostructures show non-enzymatic glucose sensing and amperometric behavior with a good sensitivity of 441.2 μ A mM− 1 cm− 2, linear range of 0.02–1 mM and low detection limit of 0.13 μ M (S/N = 3) along with a fast response time (less than 3 s). The CED growth process leads to development of conjugated hybrid nanostructured Cu2O-ZnO that presents an excellent template for non-enzymatic glucose sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhai DY, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 4:3540–3546

    Article  CAS  Google Scholar 

  2. Kros A, Hovell SWFM, Sommerdijk NAJM, Nolte RJM (2001) Poly(3,4-ethylenedioxythiophene)-based glucose biosensors. Adv Mater 13:1555–1557

    Article  CAS  Google Scholar 

  3. Niu XH, Li Y, Tang J, Hu Y, Zhao H, Lan H (2014) Electrochemical sensing interfaces with tunable porosity for non-enzymatic glucose detection: A Cu foam case. Biosens Bioelectron 51:22–28

    Article  CAS  PubMed  Google Scholar 

  4. Lim SH, Wei J, Lin J, Li Q, KuaYou J (2005) A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens Bioelectron 20:2341–2346

    Article  CAS  PubMed  Google Scholar 

  5. Rodrigues A, Castegnaro MV, Arguello J, Alves MCM, Morais J (2017) Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film. Appl Surf Sci 402:136–141

    Article  CAS  Google Scholar 

  6. Sun AL, Zheng JB, Sheng QL (2012) A highly sensitive non-enzymatic glucose sensor based on nickel and multi-walled carbon nanotubes nanohybrid films fabricated by one-step co-electrodeposition in ionic liquids. Electrochim Acta 65:64–69

    Article  CAS  Google Scholar 

  7. Dayakar T, Rao KV, Vinodkumar M, Bikshalu K, Chakradhar B, Rao KR (2018) Novel synthesis and characterization of AgTiO2 core shell nanostructure for non-enzymatic glucose sensor. Appl Surf Sci 435:216–224

    Article  CAS  Google Scholar 

  8. Lee Y, Park D, Park J, Kim Y (2008) Fabrication and optimization of a nanoporous platinum electrode and a non-enzymatic glucose micro-sensor on silicon. Sensors 8:6154–6164

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Yu B, Zhang Y (2013) A novel non-enzymatic glucose sensor based on NiO hollow spheres. Electrochim Acta 102:104–107

    Article  CAS  Google Scholar 

  11. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118

    Article  CAS  Google Scholar 

  12. Huang W, Cao Y, Chen Y, Pengb J, Lai X, Tu J (2017) Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Appl Surf Sci 396:804–811

    Article  CAS  Google Scholar 

  13. Jarosz M, Socha RP, Józwik P, Sulka GD (2017) Amperometric glucose sensor based on the Ni(OH)2/Al(OH)\(^{-}_{4}\) electrode obtained from a thin Ni3Al foil. Appl Surf Sci 408:96–102

    Article  CAS  Google Scholar 

  14. Zhu T, Zhang Y, Luo L, Zhao X (2019) Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Applied Materials & Interfaces 11:10856–10861

    Article  CAS  Google Scholar 

  15. Luo L, Li F, Zhu L, Ding Y, Zhang Z, Deng D, Lu B (2013) Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces 102:307–311

    Article  CAS  PubMed  Google Scholar 

  16. Ye J, Deng D, Wang Y, Luo L, Qian K, Cao S, Feng X (2020) Well-aligned Cu@C nanocubes for highly efficient nonenzymatic glucose detection in human serum. Sensors and Actuators B: Chemical 305:127473

    Article  CAS  Google Scholar 

  17. Cheng X, Zhang J, Chang H, Luo L, Nie F, Feng X (2016) High performance Cu/Cu2O nanohybrid electrocatalyst for nonenzymatic glucose detection. Journal of Materials Chemistry B 4:4652–4656

    Article  CAS  PubMed  Google Scholar 

  18. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H (2014) Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep 4:7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar SA, Cheng H, Chen S, Wang S (2010) Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. Mater Sci Eng C 30:86–91

    Article  CAS  Google Scholar 

  20. Zhang J, Xiao X, He Q, Huang L, Li S, Wang F (2014) A nonenzymatic glucose sensor based on a copper nanoparticle-zinc oxide nanorod array. Anal Lett 47:1147–1161

    Article  CAS  Google Scholar 

  21. Wu J, Yin F (2013) Easy fabrication of a sensitive non-enzymatic glucose sensor based on electrospinning CuO-ZnO nanocomposites. Integr Ferroelectr 147:47–58

    Article  CAS  Google Scholar 

  22. Solanki V, Joshi SR, Mishra I, Kabiraj D, Mishra NC, Avasthi DK, Varma S (2016) Oxygen vacancy mediated enhanced photo-absorption from ZnO(0001) nanostructures fabricated by atom beam sputtering. J Appl Phys 120:054303

    Article  CAS  Google Scholar 

  23. Wang C, Fan H, Ren X, Fang J (2018) Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl Phys A Mat Sci & Proces 124: 99

    Article  CAS  Google Scholar 

  24. Tian H, Fan H, Ma J, Ma L, Dong G (2017) Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim Acta 247:787

    Article  CAS  Google Scholar 

  25. Tian H, Fan H, Li M, Ma L (2016) Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. Acs Sens 1:243

    Article  CAS  Google Scholar 

  26. Chow L, Lupan O, Chai G, Khallaf H, Ono LK, Cuenya BR, Tiginyanu IM, Ursaki VV, Sontea V, Schulte A (2013) Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors Actuators A 189:399–408

    Article  CAS  Google Scholar 

  27. Li M, Meng G, Huang Q, Zhang S (2014) Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites. Sci Rep 4:4284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chung RJ, Wang AN, Liao QL, Chuang KY (2017) Non-enzymatic glucose sensor composed of carbon-coated nano-zinc oxide. Nanomaterials 7:36

    Article  PubMed Central  CAS  Google Scholar 

  29. Napi MLM, Sultan SM, Ismail R, How KW, Ahmad MK (2019) Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials 12:2985

    Article  CAS  PubMed Central  Google Scholar 

  30. Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM (2019) ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics 141:111417

    Article  CAS  PubMed  Google Scholar 

  31. Ridhuan NS, Razak KA, Lockman Z (2018) Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods. Scientific Reports 8:13722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang L, Hou JFH, Song Y (2012) A facile strategy to prepare Cu2O/Cu electrode as a sensitive enzyme-free glucose sensor. Int J Electrochem Sci 7:12587–12600

    CAS  Google Scholar 

  33. Huo H, Guo C, Li G, Han X, Xu C (2014) Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv 4:20459

    Article  CAS  Google Scholar 

  34. Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, Zhang D, Huo Q (2013) Cu2O/NiOx /graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta 104: 78–83

    Article  CAS  Google Scholar 

  35. Zhang X, Wang G, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24:3395–3398

    Article  CAS  PubMed  Google Scholar 

  36. Lupan O, Pauport T, Viana B, Aschehoug P (2011) Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode application. Electrochim Acta 56:10543–10549

    Article  CAS  Google Scholar 

  37. Sarangi SN (2016) Controllable growth of ZnO nanorods via electrodeposition technique: towards UV photo-detection. J Phys D Appl Phys 49:355103

    Article  CAS  Google Scholar 

  38. Yao G, Zhang M, Lv J, Xu K, Shi S, Gong Z, Tao J, Jiang X, Yang L, Cheng Y, He G, Chen X, Sun Z (2015) Effects of electrodeposition electrolyte concentration on microstructure, optical properties and wettability of ZnO Nanorods. J Electrochem Soc 162:D300–D304

    Article  CAS  Google Scholar 

  39. Caglar Y, Arslan A, Ilican S, Hür E, Aksoy S, Caglar M (2013) Preparation and characterization of electrodeposited ZnO and ZnO:Co nanorod films for heterojunction diode applications. J Alloys and Compd 574:104–111

    Article  CAS  Google Scholar 

  40. Liu Y, Ren F, Shen S, Fu Y, Chen C, Liu C, Xing Z, Liu D, Xiao X, Wu W, Zheng X, Liu Y, Jiang C (2015) Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell. Appl Phys Lett 106:123901

    Article  CAS  Google Scholar 

  41. Felix S, Kollu P, Raghupathy BPC, Jeong SK, Grace AK (2014) Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation. J Chem Sci 126:25–32

    Article  CAS  Google Scholar 

  42. Soundarrajan P, Sankarasubramanian K, Sampath M, Logu T, Sethuraman K, Ramamurthi K (2015) Cu ions induced reorientation of crystallite in ZnO nano/micro rod arrays thin films. Phys E 56-63(2015):71

    Google Scholar 

  43. Sharma PK, Dutta RK, Pandey AC (2009) Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods. J Magn Magn Mater 321:4001–4005

    Article  CAS  Google Scholar 

  44. Robert T, Bartel M, Offergeld G (1972) Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf Sci 33:123–130

    Article  CAS  Google Scholar 

  45. Ghijsen J, Tjeng LH, Elp JV, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322

    Article  CAS  Google Scholar 

  46. Hastir A, Kohli N, Singh RC (2017) Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J Phys Chem Solids 105:23

    Article  CAS  Google Scholar 

  47. Wu HX, Cao WM, Li Y, Liu G, Wen Y, yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55:3734–3740

    Article  CAS  Google Scholar 

  48. Wang AJ, Feng JJ, Li ZH, Liao QC, Wang ZZ, Chen JR (2012) Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing. Cryst Eng Comm 14:1289

    Article  CAS  Google Scholar 

  49. Zhang L, Ni Y, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103–108

    Article  CAS  Google Scholar 

  50. Khan R, Ahmad R, Rai P, Jang LW, Yun JH, Yu YT, Hahn YB, Lee IH (2014) Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sensors Actuators B 203:471–476

    Article  CAS  Google Scholar 

  51. Zhong Y, Shi T, Liu Z, Cheng S, Huang Y, Tao X, Liao G, Tang Z (2016) Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sensors Actuators B 236:326–333

    Article  CAS  Google Scholar 

  52. Zhao Y, Fan H, Fu K, Ma L, Li M, Fang J (2016) Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution. Int J Hydrogen Energy 41:16913–16926

    Article  CAS  Google Scholar 

  53. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  PubMed  Google Scholar 

  54. Qian Y, Ye F, Xu J, Le ZG (2012) Synthesis of Cuprous Oxide (Cu2O) Nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose. Int J Electrochem Sci 7:10063–10073

    CAS  Google Scholar 

  55. Zhou DL, Feng JJ, Cai LY, Fang QX, Chen JR, Wang AJ (2014) Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim Acta 115:103–108

    Article  CAS  Google Scholar 

  56. Gao Z, Liu J, Chang J, Wu D, He J, Wang K, Xu F, Jiang K (2012) Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. Cryst Eng Comm 14:6639–6646

    Article  CAS  Google Scholar 

  57. Zhao Y, Li Y, He Z, Yan Z (2013) Facile preparation of Cu-Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Adv 3:2178

    Article  CAS  Google Scholar 

  58. Hu Q, Wang F, Fang Z, Liu X (2012) Cu2O–Au nanocomposites for enzyme-free glucose sensing with enhanced performances. Colloids Surf B Biointerfaces 95:279–283

    Article  CAS  PubMed  Google Scholar 

  59. Su Y, Guo H, Wang Z, Long Y, Li W, Tu Y (2018) Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sensors Actuators B 255:2510–2519

    Article  CAS  Google Scholar 

  60. Zhou X, Nie H, Yao Z, Dong Y, Yang Z, Huang S (2012) Facile synthesis of nanospindle-like Cu2O /straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sensors Actuators B 168:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The help of S.K. Choudhury and S.N. Sarangi with Raman setup and EC cell, respectively, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Varma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(EPS 118 KB)

(EPS 252 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A.K., Guha, P., Solanki, V.J. et al. Non-enzymatic glucose sensing with hybrid nanostructured Cu2O-ZnO prepared by single-step coelectrodeposition technique. J Solid State Electrochem 24, 1647–1658 (2020). https://doi.org/10.1007/s10008-020-04635-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04635-w

Navigation