Skip to main content

Advertisement

Log in

The electrical conductivity of Dy3+/Sc3+ co-doped CeO2 solid electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Dy3+ single doped and Dy3+/Sc3+ co-doped CeO2 electrolyte powders were successfully synthesized by a sol–gel method followed by calcination at 800 °C for 3 h. The powdered samples were isostatically dry-pressed at 200 MPa and sintered at 1450 °C for 5 h to form into cylindrical electrolyte discs for testing. A total of four samples were prepared in this study, namely Ce0.75ScxDy0.25−xOδ where x = 0, 0.03, 0.04, and 0.05 mol. This work investigated the factors of influencing the electrical conductivity of Dy3+/Sc3+ co-doped electrolyte, relative to the Dy3+ single doped CeO2. The phase, surface morphology, and oxygen vacancy were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), and Raman spectrometer, respectively. The results of this study showed that the doped CeO2 samples retain a singular cubic fluorite structure of CeO2, but with further contracted unit cell dimensions relative to the Dy3+ single doped CeO2. The co-doping of Sc3+ was found to reduce the grain size, increase the oxygen vacancy concentration, and enhance the conductivity of the co-doped CeO2 samples than the Dy3+ single doped sample. The highest electrical conductivity of 2.32 × 10−2 S cm−1 at 600 °C was achieved at the Sc3+ doping level of x = 0.04 mol among all co-doped samples, corresponding to the highest oxygen vacancy concentration found in these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12(11):1367–1391

    Article  CAS  Google Scholar 

  2. Gunes MB, Ellis MW (2003) Evaluation of energy, environmental, and economic characteristics of fuel cell combined heat and power systems for residential applications. J Energy Resour Technol 125(3):208–220

    Article  Google Scholar 

  3. Li L, Bin Z, Jing Z, Chunjie Y, Yan W (2018) Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int J Hydrog Energy 43(28):12909–12916

    Article  CAS  Google Scholar 

  4. Badwal S (2001) Stability of solid oxide fuel cell components. Solid State Ionics 143(1):39–46

    Article  CAS  Google Scholar 

  5. Zhang T, Ma J, Kong L, Chan S, Kilner J (2004) Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study. Solid State Ionics 170(3–4):209–217

    Article  CAS  Google Scholar 

  6. Abdullah SSBC, Teranishi T, Hayashi H, Kishimoto A (2018) Millimeter-wave irradiation heating for operation of doped CeO2 electrolyte-supported single solid oxide fuel cell. J Power Sources 374:92–96

    Article  CAS  Google Scholar 

  7. Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN (2013) Preparation and characterization of Ce1−xGdxO2−δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J Alloys Compd 578:53–59

    Article  CAS  Google Scholar 

  8. Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178(37–38):1890–1897

    Article  CAS  Google Scholar 

  9. Wu YC, Lin C-C (2014) The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment. Int J Hydrog Energy 39(15):7988–8001

    Article  CAS  Google Scholar 

  10. Kaviyarasu K, Murmu PP, Kennedy J, Thema FT, Letsholathebe D, Kotsedi L, Maaza M (2017) Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals. Nucl Instrum Methods Phys Res 409:147–152

    Article  CAS  Google Scholar 

  11. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, Zhu Z (2017) Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv Mater 29(48):1700132

    Article  CAS  Google Scholar 

  12. Muhammed Ali SA, Anwar M, Abdalla AM, Somalu MR, Muchtar A (2017) Ce0.80Sm0.10Ba0.05Er0.05O2−δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceram Int 43(1):1265–1271

    Article  CAS  Google Scholar 

  13. Basu S, Devi PS, Maiti HS (2004) Synthesis and properties of nanocrystalline ceria powders. J Mater Res 19(11):3162–3171

    Article  CAS  Google Scholar 

  14. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162(1):30–40

    Article  CAS  Google Scholar 

  15. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    Article  CAS  Google Scholar 

  16. Xia C, Qiao Z, Feng C, Kim J-S, Wang B, Zhu B (2018) Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells. Materials 11(1):40

    Article  CAS  Google Scholar 

  17. Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sust Energ Rev 82:353–368

    Article  CAS  Google Scholar 

  18. Wattanathana W, Veranitisagul C, Wannapaiboon S, Klysubun W, Koonsaeng N, Laobuthee A (2017) Samarium doped ceria (SDC) synthesized by a metal triethanolamine complex decomposition method: characterization and an ionic conductivity study. Ceram Int 43(13):9823–9830

    Article  CAS  Google Scholar 

  19. Seo DJ, Ryu KO, Park SB, Kim KY, Song R-H (2006) Synthesis and properties of Ce1−xGdxO2−x/2 solid solution prepared by flame spray pyrolysis. Mater Res Bull 41(2):359–366

    Article  CAS  Google Scholar 

  20. Lee DS, Kim WS, Choi SH, Kim J, Lee H-W, Lee J-H (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ionics 176(1–2):33–39

    Article  CAS  Google Scholar 

  21. Lucid AK, Keating PRL, Allen JP, Watson GW (2016) Structure and reducibility of CeO2 doped with trivalent cations. J Phys Chem C 120(41):23430–23440

    Article  CAS  Google Scholar 

  22. Koteswararao P, Suresh MB, Wani B, Rao PB, Jadhav L (2018) Synthesis, structural and morphological studies of Sr2+ and Gd3+ co-doped ceria electrolyte system for LT-SOFC. In: IOP Conference Series: Materials Science and Engineering, vol 1. IOP Publishing, p 012029

  23. Mei-Na C, Lei Z, Hui-Ying G, Yan X, Jun-Feng R, Zi-Jing L (2018) DFT plus U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Phys Sin 67(8):088202

    Google Scholar 

  24. Massimo C, Antonietta T, Jiangtao Z, Crozier PA, Simone DZ, Matteo A, Luca G, Benedetto B, Claudio M (2018) Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance. J Solid State Electrochem 22:3761–3773

    Article  CAS  Google Scholar 

  25. Venkataramana K, Ravindranath K, Madhuri C, Madhusudan C, Kumar NP, Reddy CV (2018) Low temperature microwave sintering of yttrium and samarium co-doped ceria solid electrolytes for IT-SOFCs. Ionics 24(5):1429–1438

    Article  CAS  Google Scholar 

  26. Zhan H, Cheng J, Sun W, Li P, Gan Y, He B, Xu C (2015) Electrical conductivity and reduction stability of Scandia and Samaria co-doping ceria based electrolyte. J Chin Ceram Soc 43(2):184–188

    CAS  Google Scholar 

  27. Dong HL, Cho SK, Yo CH, Kim KH, Park SH (1994) Electrical conductivity of the solid solutions xCeO2 + (1−x)Dy2O3; 0.01 ⩽ x ⩽ 0.10. Mater Chem Phys 37(1):17–22

    Article  Google Scholar 

  28. Wang Y, Mori T, Li J-G, Drennan J (2005) Synthesis, characterization, and electrical conduction of 10 mol% Dy2O3-doped CeO2 ceramics. J Eur Ceram Soc 25(6):949–956

    Article  CAS  Google Scholar 

  29. Dutta S, Nandy A, Dutta A, Pradhan S (2016) Structure and microstructure dependent ionic conductivity in 10 mol% Dy2O3 doped CeO2 nanoparticles synthesized by mechanical alloying. Mater Res Bull 73:446–451

    Article  CAS  Google Scholar 

  30. McBride J, Hass K, Poindexter B, Weber W (1994) Raman and x-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441

    Article  CAS  Google Scholar 

  31. Popović Z, Dohčević-Mitrović Z, Konstantinović M, Šćepanović M (2007) Raman scattering characterization of nanopowders and nanowires (rods). J Raman Spectrosc 38(6):750–755

    Article  CAS  Google Scholar 

  32. Wheeler DW, Khan I (2014) A Raman spectroscopy study of cerium oxide in a cerium–5wt.% lanthanum alloy. Vib Spectrosc 70:200–206

    Article  CAS  Google Scholar 

  33. Silva IDC, Sigoli FA, Mazali IO (2017) Reversible oxygen vacancy generation on pure CeO2 nanorods evaluated by in situ Raman spectroscopy. J Phys Chem C 121(23):12928–12935

    Article  CAS  Google Scholar 

  34. Li L, Chen F, Lu J-Q, Luo M-F (2011) Study of defect sites in Ce1–xMxO2−δ (x = 0.2) solid solutions using Raman spectroscopy. J Phys Chem A 115(27):7972–7977

    Article  CAS  PubMed  Google Scholar 

  35. Grover V, Banerji A, Sengupta P, Tyagi AK (2008) Raman, XRD and microscopic investigations on CeO2–Lu2O3 and CeO2–Sc2O3 systems: a sub-solidus phase evolution study. J Solid State Chem 181(8):1930–1935

    Article  CAS  Google Scholar 

  36. Cui J, Hope GA (2015) Raman and fluorescence spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. J Spectrosc 2015:1–8

    Article  CAS  Google Scholar 

  37. Li L, Hu G-S, Lu J-Q, Luo M-F (2012) Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy. Acta Phys -Chim Sin 28(5):1012–1020

    Article  CAS  Google Scholar 

  38. Alaydrus M, Sakaue M, Aspera SM, Wungu TDK, Mohri T (2013) A first-principles study on defect association and oxygen ion migration of Sm3+ and Gd3+ co-doped ceria. J Phys Condens Matter 25(22):225401

    Article  PubMed  CAS  Google Scholar 

  39. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129(1–4):63–94

    Article  CAS  Google Scholar 

  40. Li L, Li G, Che Y, Su W (2000) Valence characteristics and structural stabilities of the electrolyte solid solutions Ce1−xRExO2−δ (RE = Eu, Tb) by high temperature and high pressure. Chem Mater 12(9):2567–2574

    Article  CAS  Google Scholar 

  41. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62(6):219–270

    Article  CAS  Google Scholar 

  42. Tian C, Chan S-W (2000) Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics 134(1-2):89–102

    Article  CAS  Google Scholar 

  43. Li H, Xia C, Zhu M, Zhou Z, Meng G (2006) Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: sintering and electrical characteristics. Acta Mater 54(3):721–727

    Article  CAS  Google Scholar 

  44. Sha X, Lü Z, Huang X, Miao J, Liu Z, Xin X, Zhang Y, Su W (2007) Influence of the sintering temperature on electrical property of the Ce0.8Sm0.1Y0.1O1.9 electrolyte. J Alloys Compd 433(1–2):274–278

    Article  CAS  Google Scholar 

  45. Zheng Y, Gu H, Chen H, Gao L, Zhu X, Guo L (2009) Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs. Mater Res Bull 44(4):775–779

    Article  CAS  Google Scholar 

  46. Jaiswal N, Upadhyay S, Kumar D, Parkash O (2014) Sm3+ and Sr2+ co-doped ceria prepared by citrate–nitrate auto-combustion method. Int J Hydrog Energy 39(1):543–551

    Article  CAS  Google Scholar 

  47. Ramesh S, Kumar VP, Kistaiah P, Reddy CV (2010) Preparation, characterization and thermo electrical properties of co-doped Ce0.8−xSm0.2CaxO2−δ materials. Solid State Ionics 181(1–2):86–91

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China under grant no. 51474133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli An.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., An, S., Li, S. et al. The electrical conductivity of Dy3+/Sc3+ co-doped CeO2 solid electrolytes. J Solid State Electrochem 24, 1639–1646 (2020). https://doi.org/10.1007/s10008-020-04705-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04705-z

Keywords

Navigation