Skip to main content
Log in

Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation–Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

This study was designed to investigate the effect of naringin in oxygen-glucose deprivation/reoxygenation (OGD/R) model and its mechanism. The target gene of naringin and the enriched pathways of the gene were searched and identified using bioinformatics analysis. Then OGD/R model was built using PC12 cells, after which the cells were treated with different concentrations of naringin. Subsequently, cell proliferation and apoptosis were evaluated by cell counting kit-8 (CCK-8) and flow cytometry assays, respectively. Meanwhile, the expression of NFKB1 in PC12 cells underwent OGD/R-induced injury was detected by qRT-PCR, while apoptosis-related and pathway-related proteins were checked by Western blot. DCF-DA kit was utilized to measure the level of ROS. Our results revealed that NFKB1, which was upregulated in MACO rats and OGD/R-treated PC12 cells, was a target gene of naringin. Naringin could alleviate OGD/R-induced injury via promoting the proliferation, and repressing the apoptosis of PC12 cells through regulating the expression of NFKB1 and apoptosis-associated proteins and ROS level. Besides, the depletion of NFKB1 was positive to cell proliferation but negative to cell apoptosis. Moreover, the depletion of NFKB1 enhanced the influences of naringin on cell proliferation and apoptosis as well as the expression of apoptosis-related proteins and ROS level. Western blotting indicated that both naringin treatment and depletion of NFKB1 could increase the expression of HIF-1α, p-AKT, and p-mTOR compared with OGD/R group. What’s more, treatment by naringin and si-NFKB1 together could significantly increase these effects. Nevertheless, the expression of AKT and mTOR among each group was almost not changed. In conclusion, naringin could prevent the OGD/R-induced injury in PC12 cells in vitro by targeting NFKB1 and regulating HIF-1α/AKT/mTOR-signaling pathway, which might provide novel ideas for the therapy of cerebral ischemia-reperfusion (I/R) injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akondi BR, Challa SR, Akula A (2011) Protective effects of rutin and naringin in testicular ischemia-reperfusion induced oxidative stress in rats. J Reprod Infertil 12(3):209–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amini N, Sarkaki A, Dianat M, Mard SA, Ahangarpour A, Badavi M (2019) Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation. Pharmacol Rep 71(6):1059–1066

    Article  PubMed  Google Scholar 

  • Bakar E, Ulucam E, Cerkezkayabekir A, Sanal F, Inan M (2019) Investigation of the effects of naringin on intestinal ischemia reperfusion model at the ultrastructural and biochemical level. Biomed Pharmacother 109:345–350

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Liu J, Shen P, Cai J, Han Y et al (2018) Protective effect of naringin on DSS-induced ulcerative colitis in mice. J Agric Food Chem 66(50):13133–13140

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Venketasubramanian N, Gan RN, Lambert C, Picard D, Chan BPL, Chan E, Bousser MG, Xuemin S (2009) Danqi Piantang Jiaonang (DJ), a traditional Chinese medicine, in poststroke recovery. Stroke. 40(3):859–863

    Article  PubMed  Google Scholar 

  • Chen R, Qi QL, Wang MT, Li QY (2016) Therapeutic potential of naringin: an overview. Pharm Biol 54(12):3203–3210

    Article  CAS  PubMed  Google Scholar 

  • Chen TL, Tran M, Lakshmanan A, Harrington BK, Gupta N, Goettl VM, Lehman AM, Trudeau S, Lucas DM, Johnson AJ, Byrd JC, Hertlein E (2017) NF-kappaB p50 (nfkb1) contributes to pathogenesis in the emu-TCL1 mouse model of chronic lymphocytic leukemia. Blood. 130(3):376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Liu F, Yan L, Lin L, Qiu Y et al (2018) A functional haplotype of NFKB1 influence susceptibility to oral cancer: a population-based and in vitro study. Cancer Med 7(5):2211–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deenonpoe R, Prayong P, Thippamom N, Meephansan J, Na-Bangchang K (2019) Anti-inflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complement Altern Med 19(1):168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng J, Chen X, Lu S, Li W, Yang D et al (2018) Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation. Mol Neurobiol 55(12):9029–9042

    Article  CAS  PubMed  Google Scholar 

  • Fuentes B, Tejedor ED (2014) Stroke: the worldwide burden of stroke--a blurred photograph. Nat Rev Neurol 10(3):127–128

    Article  PubMed  Google Scholar 

  • Gaur V, Aggarwal A, Kumar A (2009) Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 616(1–3):147–154

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Agnihotri V, Kumar R, Upadhyay AD, Bhaskar S, Dwivedi S, Dey S (2017) Effects of tobacco habits on the polymorphism of NFKB1 and NFKB1A gene of head and neck squamous cell carcinoma in Indian population. Asian Pac J Cancer Prev 18(7):1855–1859

    PubMed  PubMed Central  Google Scholar 

  • Gursul C, Ekinci Akdemir FN, Akkoyun T, Can I, Gul M et al (2016) Protective effect of Naringin on experimental hindlimb ischemia/reperfusion injury in rats. J Enzyme Inhib Med Chem 31(sup1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Guzik A, Bushnell C (2017) Stroke Epidemiology and Risk Factor Management. Continuum (Minneap Minn) 23(1, cerebrovascular disease):15–39

    Google Scholar 

  • Han Q, Liu S, Li Z, Hu F, Zhang Q, Zhou M, Chen J, Lei T, Zhang H (2014) DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res 1542:176–185

    Article  CAS  PubMed  Google Scholar 

  • Hankey GJ (2017) Stroke. Lancet 389(10069):641–654

    Article  PubMed  Google Scholar 

  • Harari OA, Liao JK (2010) NF-kappaB and innate immunity in ischemic stroke. Ann N Y Acad Sci 1207:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Gong T, Zhang T, Wang X, Cheng Q, Li Y (2019) Zhongfenggao protects brain microvascular endothelial cells from oxygen-glucose deprivation/reoxygenation-induced injury by angiogenesis. Biol Pharm Bull 42(2):222–230

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Park JH, Ku HJ, Kim SH, Lim YJ, Park JW, Lee JH (2018a) Naringin protects acrolein-induced pulmonary injuries through modulating apoptotic signaling and inflammation signaling pathways in mice. J Nutr Biochem 59:10–16

    Article  CAS  PubMed  Google Scholar 

  • Kim GC, Kwon HK, Lee CG (2018b) Upregulation of Ets1 expression by NFATc2 and NFKB1/RELA promotes breast cancer cell invasiveness. Oncogenesis 7(11):91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuang MJ, Zhang WH, He WW, Sun L, Ma JX, Wang D, Ma XL (2019) Naringin regulates bone metabolism in glucocorticoid-induced osteonecrosis of the femoral head via the Akt/Bad signal cascades. Chem Biol Interact 304:97–105

    Article  CAS  PubMed  Google Scholar 

  • Liang K, Zhu L, Tan J, Shi W, He Q, Yu B (2015) Identification of autophagy signaling network that contributes to stroke in the ischemic rodent brain via gene expression. Neurosci Bull 31(4):480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Wang C, Peng J, Li W, Jin Y, Liu Q, Meng Q, Liu K, Sun H (2016) Naringin regulates cholesterol homeostasis and inhibits inflammation via modulating NF-kappaB and ERK signaling pathways in vitro. Pharmazie. 71(2):101–108

    CAS  PubMed  Google Scholar 

  • Liang W, Lin C, Yuan L, Chen L, Guo P, Li P, Wang W, Zhang X (2019) Preactivation of Notch1 in remote ischemic preconditioning reduces cerebral ischemia-reperfusion injury through crosstalk with the NF-κB pathway. J Neuroinflammation 16(1):181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Su WW, Wang S, Li PB (2012) Naringin inhibits chemokine production in an LPS-induced RAW 264.7 macrophage cell line. Mol Med Rep 6(6):1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ et al (2007) The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21(9):1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahura IS (2003) Cerebral ischemia-hypoxia and biophysical mechanisms of neurodegeneration and neuroprotection effects. Fiziol Zh 49(2):7–12

    CAS  PubMed  Google Scholar 

  • Mathew S, Murty VV, Dalla-Favera R, Chaganti RS (1993) Chromosomal localization of genes encoding the transcription factors, c-rel, NF-kappa Bp50, NF-kappa Bp65, and lyt-10 by fluorescence in situ hybridization. Oncogene. 8(1):191–193

    CAS  PubMed  Google Scholar 

  • C J Mattingly, M C Rosenstein, G T Colby, J N Forrest Jr, J L Boyer (2006) The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. Journal of experimental zoology. Part A, Comp Exp Biol 305(9): 689–692

  • May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19(2):80–88

    Article  CAS  PubMed  Google Scholar 

  • Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM (2016) Importance of the alternative NF-kappaB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 310(11):G1081–G1090

    Article  PubMed  Google Scholar 

  • Ming H, Chuang Q, Jiashi W, Bin L, Guangbin W, Xianglu J (2018) Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 10(12):4141–4151

    Article  CAS  Google Scholar 

  • Mitome-Mishima Y, Miyamoto N, Tanaka R, Shimosawa T, Oishi H et al (2014) Adrenomedullin deficiency and aging exacerbate ischemic white matter injury after prolonged cerebral hypoperfusion in mice. Biomed Res Int 2014:861632

    Article  PubMed  PubMed Central  Google Scholar 

  • Musuka TD, Wilton SB, Traboulsi M, Hill MD (2015) Diagnosis and management of acute ischemic stroke: speed is critical. Cmaj. 187(12):887–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okuyama S, Yamamoto K, Mori H, Sawamoto A, Amakura Y, Yoshimura M, Tamanaha A, Ohkubo Y, Sugawara K, Sudo M, Nakajima M, Furukawa Y (2018) Neuroprotective effect of Citrus kawachiensis (Kawachi Bankan) peels, a rich source of naringin, against global cerebral ischemia/reperfusion injury in mice. Biosci Biotechnol Biochem 82(7):1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Okuyama S, Katoh M, Kanzaki T, Kotani Y, Amakura Y et al (2019) Auraptene/naringin-rich fruit juice of Citrus kawachiensis (Kawachi Bankan) prevents ischemia-induced neuronal cell death in mouse brain through anti-inflammatory responses. J Nutr Sci Vitaminol (Tokyo) 65(1):66–71

    Article  CAS  Google Scholar 

  • O'Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A et al (2018) Loss of NF-kappaB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1-dependent manner. Immunity 48(3):570–583.e578

    Article  CAS  PubMed  Google Scholar 

  • Pluta R, Januszewski S, Jablonski M, Ulamek M (2010) Factors in creepy delayed neuronal death in hippocampus following brain ischemia-reperfusion injury with long-term survival. Acta Neurochir Suppl 106:37–41

    Article  PubMed  Google Scholar 

  • Podder B, Song HY, Kim YS (2014) Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation. J Microbiol Biotechnol 24(5):605–613

    Article  CAS  PubMed  Google Scholar 

  • Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VV et al (2015) Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol 47(3):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Rani N, Bharti S, Manchanda M, Nag TC, Ray R, Chauhan SS, Kumari S, Arya DS (2013) Regulation of heat shock proteins 27 and 70, p-Akt/p-eNOS and MAPKs by naringin dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion. PLoS One 8(12):e82577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61(3):253–278

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Chopra K (2004) The effect of naringin, a bioflavonoid on ischemia-reperfusion induced renal injury in rats. Pharmacol Res 50(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12(1):122–127

    Article  CAS  PubMed  Google Scholar 

  • Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF (2013) Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease. Int J Mol Sci 14(3):5576–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LX, Huang HH, Chen YF, Cai HC, Qian JQ (2015) The effects of prenatal stress on the cell apoptosis after MCAO in adult offspring rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 31(5):427–430, 436

    PubMed  Google Scholar 

  • Wang J, Cao B, Han D, Sun M, Feng J (2017) Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis 8(1):71–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang Z, Zhu X, Guan S, Liu Z (2019) NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim 55(7):491–500

    Article  PubMed  Google Scholar 

  • Xia R, Ji C, Zhang L (2017) Neuroprotective effects of pycnogenol against oxygen-glucose deprivation/reoxygenation-induced injury in primary rat astrocytes via NF-κB and ERK1/2 MAPK pathways. Cell Physiol Biochem 42(3):987–998

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kong X, Xiu H, Dou Y, Wu Z, Sun P (2018) Combination of curcumin and vagus nerve stimulation attenuates cerebral ischemia/reperfusion injury-induced behavioral deficits. Biomed Pharmacother 103:614–620

    Article  CAS  PubMed  Google Scholar 

  • Yang XS, Xu ZW, Yi TL, Xu RC, Li J, Zhang WB, Zhang S, Sun HT, Yu ZQ, Xu HX, Tu Y, Cheng SX (2018) Ouabain suppresses the growth and migration abilities of glioma U87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF1alpha. Mol Med Rep 17(4):5595–5600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Lai Y, Huang P, Xie L, Lin H, Zhou Z, Mo C, Deng G, Yan W, Gao Z, Huang S, Chen Y, Sun X, Lv Z, Gao L (2019) Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress. Life Sci 216:305–312

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Chen Kan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Feng, SJ. & Kan, MC. Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation–Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway. J Mol Neurosci 71, 101–111 (2021). https://doi.org/10.1007/s12031-020-01630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01630-8

Keywords

Navigation