Skip to main content
Log in

A precise, simple and general Basic Le Châtelier Principle based on elementary calculus: What Le Châtelier had in mind?

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Le Châtelier Principle is one of the most important concepts in chemistry, and it has been the topic of many publications over the years. However, its meaning and application are often fraught with misunderstanding and confusion. As a suggested replacement, we present herein a precise general statement that we call the Basic Le Châtelier Principle (BLCP), which is in keeping with a common thread in Le Châtelier’s original statements. The BLCP is formulated as a consequence of well-known properties of a simple but general optimization problem, which elevates its range of application beyond chemistry to any phenomenon governed by such an optimization principle. We show applications of the BLCP to simple example problems in economics and in physics, in addition to the usual chemistry problems,. Following a brief outline of Le Châtelier’s original statements, we formulate the BLCP, which incorporates the notion of “de signe contraire” (of opposite sign), common to all his statements. It arises by abstracting the chemical reaction equilibrium problem (CREP) in the single-reaction case to the general problem of minimizing a differentiable function \(f(x;\{p_j\})\), where x is the single independent variable and \(\{p_j\}\) is a set of parameters. The BLCP arises from an exact expression for the dependence of the sign of the incremental change in the optimal solution \(x^*\) on the sign of the incremental change in a parameter, which is derived using techniques taught in an early undergraduate calculus course. When translated back to the CREP, this yields unambiguous expressions for the sign of the incremental change in the equilibrium reaction extent, \(\xi ^*\), arising from an incremental change in each of TP, the initial species amounts, \(\{n_i^0\}\), and the standard reaction free energy change, \(\varDelta G^{\Box }\). Special emphasis is placed on the requirement that f must satisfy a positive definite second derivative condition, for which we present a proof in the case of multiple reactions in an ideal solution model system. We also briefly consider the extension of the single-variable BLCP derived herein to the case of multiple independent variables and to finite parameter perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. L. Pauling, College Chemistry. An Introductory Textbook of General Chemistry, 3rd edn. (W. H. Freeman and Company, San Francisco, 1964)

    Google Scholar 

  2. J. de Heer, J. Chem. Educ. 34(8), 375 (1957)

    Google Scholar 

  3. J. de Heer, J. Chem. Educ. 35, 133 (1957)

    Google Scholar 

  4. A. Standen, J. Chem. Educ. 35, 132 (1958)

    Google Scholar 

  5. E.K. Mellon, J. Chem. Educ. 56(6), 380 (1979)

    CAS  Google Scholar 

  6. G.M. Bodner, J. Chem. Educ. 57(2), 117 (1980)

    CAS  Google Scholar 

  7. R.S. Treptow, J. Chem. Educ. 57(6), 417 (1980)

    CAS  Google Scholar 

  8. R. Fernandez-Prini, J. Chem. Educ. 59(7), 550 (1982)

    CAS  Google Scholar 

  9. J. Gold, V. Gold, Chem. Br. Sept. 802 (1984)

  10. J. Gold, V. Gold, Educ. Chem. (1985)

  11. Z. Xianmin, J. Chem. Educ. 66(5), 401 (1989)

    Google Scholar 

  12. M. Hillert, J. Phase Equilib. 16(5), 403 (1995)

    Google Scholar 

  13. J. Quilez-Pardo, J. Res. Sci. Teach. 32(9), 939 (1995)

    Google Scholar 

  14. Z.K. Liu, J. Agren, M. Hillert, Fluid Phase Equilib. 121, 167 (1996)

    CAS  Google Scholar 

  15. S.G. Canagaratna, J. Chem. Educ. 80(10), 1211 (2003)

    CAS  Google Scholar 

  16. D.S. Corti, E.S. Franses, Chem. Eng. Educ. (Fall) 290 (2003)

  17. D. Cheung, Hong Kong Sci. Teach. J. 22(1), 35 (2004)

    Google Scholar 

  18. M.J. Uline, D.S. Corti, J. Chem. Educ. 83(1), 138 (2006)

    CAS  Google Scholar 

  19. T.R. Herrinton, J. Chem. Educ. 84(9), 1427 (2007)

    CAS  Google Scholar 

  20. D.S. Corti, M.J. Uline, J. Chem. Educ. 84(9), 1427 (2007)

    CAS  Google Scholar 

  21. E.M. Torres, J. Chem. Educ. 84(3), 516 (2007)

    CAS  Google Scholar 

  22. M.J. Uline, D.S. Corti, J. Chem. Educ. 85(8), 1052 (2008)

    CAS  Google Scholar 

  23. D. Cheung, J. Chem. Educ. 86(4), 514 (2009)

    CAS  Google Scholar 

  24. P.A. Samuelson, Foundations of Economic Analysis (Harvard Un. Press, Cambridge, 1947)

    Google Scholar 

  25. P. Milgrom, J. Roberts, Am. Econ. Rev. 86(1), 173 (1996)

    Google Scholar 

  26. P. Milgrom, Multipliers and the Le Châtelier Principle (Oxford Un. Press, Oxford, 2006), book section 18

  27. T. Sousa, T. Domingos, Phys. A Stat. Mech. Its Appl. 371(2), 492 (2006)

    Google Scholar 

  28. V.B.E. Thomsen, J. Chem. Educ. 77(2), 173 (2000)

    CAS  Google Scholar 

  29. K.H. Norwich, Front Physiol. 1, 17 (2010)

    PubMed  PubMed Central  Google Scholar 

  30. J. Ihde, J. Chem. Educ. 86(3), 237 (1989)

    Google Scholar 

  31. W.R. Smith, G.N. White, 3rd, Mech. Ageing Dev. 18(3), 261 (1982)

  32. L. Katz, Report New England Association of Chemistry Teachers 38(7), 375 (1961)

    Google Scholar 

  33. Y. Liu, Y. Liu, M.G.B. Drew, J. Math. Chem. 51(2), 715 (2013)

    Google Scholar 

  34. Y. Liu, Y. Liu, M.G.B. Drew, J. Math. Chem. 51(2), 741 (2013)

    CAS  Google Scholar 

  35. Y. Liu, Y. Liu, M.G.B. Drew, J. Math. Chem. 53(8), 1835 (2015)

    CAS  Google Scholar 

  36. E. Cohen, Studies in Chemical Dynamics ((translation and revision of “Etudes de Dynamique Chimique”, by J.H. van’t Hoff, 1884); Chemical Publishing Co., Easton, PA, 1896)

  37. H. Le Châtelier, Compt. Rend. 99, 786 (1884)

    Google Scholar 

  38. H. Le Châtelier, Compt. Rend. 100, 50 (1885)

    Google Scholar 

  39. H. Le Châtelier, Ann. des Mines sér 8(13), 200 (1888)

    Google Scholar 

  40. H. Le Châtelier, Ann. des Mines sér 8(13), 362 (1888)

    Google Scholar 

  41. C.H. Desch, J. Chem. Soc. p. 139 (1938)

  42. I. Prigogine, R. Defay, Chemical Thermodynamics (Longmans, London, Translated by D (H. Everett, Longmans, 1954)

  43. B. Singh, D. Ebbing, J. Chem. Educ. 33(1), 34 (1956)

    CAS  Google Scholar 

  44. C. Giomini, G. Marrosu, M.E. Cardinali, A. Paolucci, Chem. Educ. Res. Pract. 1(1), 145 (2000)

    CAS  Google Scholar 

  45. I. Novak, J. Chem. Educ. 95(1), 84 (2017)

    Google Scholar 

  46. P.H. Mercier, J. Chem. Educ. 95, 521 (2018)

    CAS  Google Scholar 

  47. K. Sydsaeter, P.J. Hammond, Mathematics for Economic Analysis (Prentice-Hall, Englewood Cliffs, 1995)

    Google Scholar 

  48. M.H. Partovi, M.R. Caputo, Metroeconomica 57(1), 31 (2006)

    Google Scholar 

  49. M.H. Partovi, M.R. Caputo, arXiv:1310.7265v1 [math.oc] (2013)

  50. L. Rayleigh, Trans. Chem. Soc. III 111, 250 (1917)

    CAS  Google Scholar 

  51. W.R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis: Theory and Algorithms (Krieger Publishing Co.; Reprint of same title, Willey-Interscience, 1982, Malabar, Florida, 1991)

  52. W.R. Smith, H. Eyring, D.E. Henderson, Theor. Chem. Adv. Perspect. 5, 185 (1980)

    CAS  Google Scholar 

  53. P.S. Epstein, Textbook of Thermodynamics (Wiley, New York, 1937)

    Google Scholar 

  54. I.N. Levine, Physical Chemistry, 3rd edn. (McGraw-Hill, New York, 1988)

    Google Scholar 

  55. J. Tester, M. Modell, Thermodynamics and Its Applications, 3rd edn. (Prentice Hall PTE, Upper Saddle River, 1997)

    Google Scholar 

  56. P.G. Mezey, Chem. Phys. Lett. 47(1), 70 (1977)

    CAS  Google Scholar 

  57. P.G. Mezey, J. Math. Chem. 25, 853 (1984)

    CAS  Google Scholar 

  58. P.G. Mezey, J. Phys. Chem. A 119(21), 5305 (2015)

    CAS  PubMed  Google Scholar 

  59. M. Torrent-Sucarrat, J.M. Luis, M. Duran, A. Toro-Labbé, M. Solà, J. Chem. Phys. 119(18), 9393 (2003)

    CAS  Google Scholar 

  60. T. De Donder, Bull. Ac. Roy. Belg. (Cl. Sc.) 7(5), 197 (1922)

  61. T. De Donder, Bull. Ac. Roy. Belg. (Cl. Sc.) 19, 881 (1933)

  62. T. De Donder, L’Affinité (1936)

  63. P. van Rysselberghe, T. De Donder, L’Affinité (Gauthier-Villars, Paris, 1936)

    Google Scholar 

  64. J.V. Smith, R.W. Missen, W.R. Smith, AIChE J. 39(4), 707 (1993)

    CAS  Google Scholar 

  65. F.H. MacDougall, J. Phys. Chem. 41(5), 775 (1937)

    Google Scholar 

  66. T.F. Young, J. Chem. Educ. 2, 98 (1938)

    Google Scholar 

  67. Z. Li, D.S. Corti, J. Chem. Educ. (2018)

  68. W.R. Smith, B. Tríska, J. Chem. Phys. 100(4), 3019 (1994)

    CAS  Google Scholar 

  69. K.J. Johnson, Z. Panagiotopoulos, K.E. Gubbins, Mol. Phys. 81(3), 717 (1994)

    CAS  Google Scholar 

  70. C.H. Turner, J.K. Brennan, M. Lísal, W.R. Smith, J. Karl Johnson, K.E. Gubbins, Molec. Simulation 34, 119 (2008)

    CAS  Google Scholar 

  71. G. Tsaparlis, O.E. Finlayson, Chem. Educ. Res. Pract. 15(3), 257 (2014)

    CAS  Google Scholar 

  72. K. Bain, A. Moon, M.R. Mack, M.H. Towns, Chem. Educ. Res. Pract. 15(3), 320 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The contributions to this paper of the late Professor R. W. Missen are gratefully acknowledged; the basic ideas herein were presented at the 2001 annual Can. Soc. Chem. Eng. (CSChE) conference in Halifax, NS, and at the 2016 Canadian Applied and Industrial Mathematics (CAIMS) conference in Edmonton, AB. I thank Professor Janet Elliott of the University of Alberta, Dr. Allan Leal of ETH Zurich, and Dr. Hermann Eberl of the University of Guelph for useful discussions. This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN–2018–0421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Smith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, W.R. A precise, simple and general Basic Le Châtelier Principle based on elementary calculus: What Le Châtelier had in mind?. J Math Chem 58, 1548–1570 (2020). https://doi.org/10.1007/s10910-020-01140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01140-3

Keywords

Navigation