Skip to main content

Advertisement

Log in

Modelling of the “surface explosion” of the \(\hbox {NO}+\hbox {H}_{2}\) reaction over supported catalysts

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We propose and numerically solve a phenomenological model for reduction of nitric oxide NO by hydrogen \(\hbox {H}_2\) over supported catalysts. The model is based on the coupled system of PDEs with nonclassic conjugate conditions at the catalyst–support interface and includes the adsorption and desorption of particles of both reactants, surface diffusion of adsorbed molecules, and their surface reaction. We study the influence of the surface diffusivity, the particle jumping rate constants via the catalyst–support interface, and the concentration of reactants on the catalytic reactivity of the catalyst. We find that under specific values of kinetic rate constants, the turnover frequency of molecules of both reactants into \(\hbox {H}_2\)O can possess one, two, or three peaks, whereas the turnover frequency of the reactant particles into \(\hbox {N}_2\), \(\hbox {N}_2\)O, and \(\hbox {NH}_3\) can have one or two peaks. We also give the other model based on the coupled system of ODEs. We show that turnover frequencies obtained by both models differ slightly only for large values of the surface diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.C. Egelhoff Jr., The chemical physics of solid surfaces and heterogeneous catalysis, in Fundamental Studies of Heterogeneous Catalysis, vol. 4, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1982)

    Google Scholar 

  2. K.C. Taylor, Automotive Catalytic Converters (Springer, Berlin, 1984)

    Google Scholar 

  3. V.P. Zhdanov, Surf. Sci. Rep. 45, 231 (2002)

    CAS  Google Scholar 

  4. M.W. Lesley, L.D. Schmidt, Surf. Sci. 155, 215 (1985)

    CAS  Google Scholar 

  5. H.H. Madden, R. Imbihl, Appl. Surf. Sci. 48/49, 130 (1991)

    Google Scholar 

  6. J. Siera, P. Cobden, K. Tanaka, B.E. Nieuwenhuys, Catal. Lett. 10, 335 (1991)

    CAS  Google Scholar 

  7. M.F.H. van Tol, A. Gielbert, B.E. Nieuwenhuys, Catal. Lett. 16, 297 (1992)

    Google Scholar 

  8. J. Siera, Ph.D. thesis (Leiden university, The Nederlands, 1992)

  9. P.D. Cobden, J. Siera, B.E. Nieuwenhuys, J. Vac. Sci. Technol. A10, 2487 (1992)

    Google Scholar 

  10. S.J. Lombardo, M. Slinko, T. Fink, T. Loher, H.H. Madden, R. Imbihl, G. Ertl, Surf. Sci. 269/270, 481 (1992)

    Google Scholar 

  11. M.M. Slinko, T. Fink, T. Loher, H.H. Madden, S.J. Lombardo, R. Imbihl, G. Ertl, Surf. Sci. 264, 157 (1992)

    CAS  Google Scholar 

  12. D.Y. Zemlyanov, M.Y. Smirnov, V.V. Gorodeckii, J.H. Block, Surf. Sci. 61, 329 (1995)

    Google Scholar 

  13. B. Rausemberger, M. Mundschau, W. Swiech, W. Engel, A.M. Bradshaw, J. Chem. Soc. Faraday Trans. 92, 2941 (1996)

    Google Scholar 

  14. S.J. Lombardo, T. Fink, R. Imbihl, J. Chem. Phys. 98, 5526 (1993)

    CAS  Google Scholar 

  15. M.M. Slinko, N.I. Jaeger, Oscillating Heterogeneous Catalytic Systems (Elsevier, Amsterdam, 1994)

    Google Scholar 

  16. M. Gruyters, A.T. Pasteur, D.A. King, J. Chem. Soc. Faraday Trans. 92, 2941 (1996)

    CAS  Google Scholar 

  17. A.G. Makeev, B.E. Niewenhuys, J. Chem. Phys. 108, 3740 (1998)

    CAS  Google Scholar 

  18. A.G. Makeev, B.E. Nieuwenhuys, Surf. Sci. 418, 432 (1998)

    CAS  Google Scholar 

  19. F. Zaera, C.S. Gopinath, J. Chem. Phys. 111, 8088 (1999)

    CAS  Google Scholar 

  20. A.G. Makeev, M. Hinz, R. Imbihl, J. Chem. Phys. 114, 9083 (2001)

    CAS  Google Scholar 

  21. Y. De Decker, F. Baras, N. Kruse, G. Nicolis, J. Chem. Phys. 117, 10244 (2002)

    Google Scholar 

  22. F.V. Caballero, L. Vicente, Chem. Eng. Sci. 58, 5087 (2003)

    CAS  Google Scholar 

  23. F.V. Caballero, L. Vicente, Chem. Eng. J. 106, 229 (2005)

    CAS  Google Scholar 

  24. L. Vicente, F.V. Caballero, J. Mol. Catal. A Chem. 272, 118 (2007)

    CAS  Google Scholar 

  25. D.D. Hibbitts, R. Jimenez, M. Yoshimura, B. Weiss, E. Iglesia, J. Catal. 319, 95 (2014)

    CAS  Google Scholar 

  26. R. Imbihl, G. Ertl, Chem. Rev. 96, 697 (1995)

    Google Scholar 

  27. V.P. Zhdanov, B. Kasemo, Appl. Catal. A 187, 61 (1999)

    CAS  Google Scholar 

  28. V.P. Zhdanov, Phys. Rev. E 5(9), 6292 (1999)

    Google Scholar 

  29. V.P. Zhdanov, Phys. Rev. E 60, 7554 (1999)

    CAS  Google Scholar 

  30. V.P. Zhdanov, Phys. Rev. B 62, 4849 (2000)

    Google Scholar 

  31. V.P. Zhdanov, B. Kasemo, Phys. D 151, 73 (2001)

    CAS  Google Scholar 

  32. A.N. Gorban, H.P. Sargsyan, H.A. Wahab, Math. Model. Nat. Phenom. 6, 184 (2011)

    Google Scholar 

  33. V.P. Zhdanov, Surf. Sci. 500, 966 (2002)

    CAS  Google Scholar 

  34. L. Cwiklik, B. Jagoda-Cwiklik, M. Frankowicz, Surf. Sci. 572, 318 (2004)

    CAS  Google Scholar 

  35. L. Cwiklik, Chem. Phys. Lett. 449, 304 (2007)

    CAS  Google Scholar 

  36. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, vol. 33, Springer Series in Computational Mathematics (Springer, Berlin, 2003)

    Google Scholar 

  37. A.A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001)

    Google Scholar 

  38. R. Čiegis, P. Katauskis, V. Skakauskas, Nonlinear. Anal. Model. Control 23, 234 (2018)

    Google Scholar 

  39. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  40. L.F. Shampine, I. Gladwell, S. Thompson, C. Beardah, Solving ODEs with MATLAB (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  41. T. Fink, J.P. Dath, M.R. Basset, R. Imbihl, G. Ertl, Surf. Sci. 245, 96 (1991)

    CAS  Google Scholar 

  42. D.Y. Zemlyanov, M.Y. Smirnov, V.V. Gorodeckii, React. Kinet. Catal. Lett. 53, 87 (1994)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Lithuania (Project No. S-MIP-17-65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Skakauskas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Modelling of the “surface explosion” of the \(\hbox {NO}+\hbox {H}_{2}\) reaction over supported catalysts. J Math Chem 58, 1531–1547 (2020). https://doi.org/10.1007/s10910-020-01149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01149-8

Keywords

Navigation