Skip to main content
Log in

Conservation laws and symmetry analysis for a quasi-linear strongly-damped wave equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, it is considered a quasi-linear strongly-damped wave equation defined by a non-linear partial differential equation of third order. The equation describes motions of viscoelastic solids. We study the conservation laws of this equation. By applying the multiplier method of Anco and Bluman to the equation, we find the multipliers. Consequently, we obtain a complete classification of conservation laws. Moreover, we use the Lie-group theory to analyse the symmetries of the equation. From the Lie symmetries, all the reductions are determined. Afterwards, we construct exact solutions with physical interest: travelling wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.C. Anco, Generalization of Noether’s theorem in modern form to non-variational partial differential equations, in Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, ed. by R. Melnik, R. Makarov, J. Belair (Springer, New York, 2017), pp. 119–182

    Chapter  Google Scholar 

  2. S.C. Anco, G.W. Bluman, Direct constrution method for conservation laws of partial differential equations part 2: general treatment. Eur. J. Appl. Math. 5, 545–566 (2002)

    Article  Google Scholar 

  3. S.C. Anco, G.W. Bluman, Direct constrution method for conservation laws of partial differential equations part I: examples of conservation law classifications. Eur. J. Appl. Math. 5, 545–566 (2002)

    Article  Google Scholar 

  4. S.C. Anco, M. Rosa, M.L. Gandarias, Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete Contin. Dyn. Syst. Ser. S 11, 607–615 (2018)

    Google Scholar 

  5. A. Atallah-Baraket, M. Trabelsi, Analysis of the energy decay of a viscoelasticity type equation. Analele Stiintifice ale Universitatii Ovidius Constanta 24, 21–45 (2016)

    Google Scholar 

  6. G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002)

    Google Scholar 

  7. G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations (Springer, New York, 2010)

    Book  Google Scholar 

  8. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989)

    Book  Google Scholar 

  9. M.S. Bruzón, A.P. Márquez, Conservation laws of one-dimensional strain-limiting viscoelasticity model. AIP Conf. Proc. 1836, 020081 (2017)

    Article  Google Scholar 

  10. M.S. Bruzón, A.P. Márquez, T.M. Garrido, E. Recio, R. de la Rosa, Conservation laws for a generalized seventh order kdv equation. J. Comput. Appl. Math. 354, 682–688 (2019)

    Article  Google Scholar 

  11. M.S. Bruzón, E. Recio, T.M. Garrido, A.P. Márquez, Conservation laws, classical symmetries and exact solutions of the generalized KdV–Burguers–Kuramoto equation. Open Phys. 15, 433–439 (2017)

    Article  Google Scholar 

  12. M.S. Bruzón, E. Recio, T.M. Garrido, A.P. Márquez, R. de la Rosa, On the similarity solutions and conservation laws of the Cooper–Shepard–Sodano equation. Math. Methods Appl. Sci. 41, 7325–7332 (2018)

    Article  Google Scholar 

  13. R. de la Rosa, M.L. Gandarias, M.S. Bruzón, On symmetries and conservation laws of a Gardner equation involving arbitrary functions. Appl. Math. Comput. 290, 125–134 (2016)

    Google Scholar 

  14. M.L. Gandarias, M. Khalique, Symmetries, solutions and conservation laws of a class of nonlinear dispersive wave equations. Commun. Nonlinear Sci. Numer. Simul. 32, 114–131 (2016)

    Article  Google Scholar 

  15. P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  16. Y. Lei, S. Adhikari, M.I. Friswell, Vibration of nonlocal Kelvin–Voigt viscoelastic damped timoshenko beams. Int. J. Eng. Sci. 66, 1–13 (2013)

    Article  Google Scholar 

  17. R. Lewandowski, B. Chorazyczewski, Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Article  Google Scholar 

  18. D.M. Mothibi, C.M. Khalique, Conservation laws and exact solutions of a generalized Zakharov–Kuznetsov equation. Symmetry 7, 949–961 (2015)

    Article  Google Scholar 

  19. T. Motsepa, C.M. Khalique, M.L. Gandarias, Symmetry analysis and conservation laws of the Zoomeron equation. Symmetry 9, 1–11 (2017)

    Article  Google Scholar 

  20. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986)

    Book  Google Scholar 

  21. H. Schiessel, R. Metzler, A. Blumen, T.F. Nonnenmacher, Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A Math. Gen. 28, 6567 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. P. Márquez expresses its sincere gratitude to the Plan Propio de Investigación y Transferencia of the University of Cadiz. The authors express their sincere gratitude to the financial support of Junta de Andalucía FQM-201 group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena del Pilar Márquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pilar Márquez, A., de los Santos Bruzón, M. Conservation laws and symmetry analysis for a quasi-linear strongly-damped wave equation. J Math Chem 58, 1489–1498 (2020). https://doi.org/10.1007/s10910-020-01146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01146-x

Keywords

Navigation