Skip to main content
Log in

Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

In comparing clustering partitions, the Rand index (RI) and the adjusted Rand index (ARI) are commonly used for measuring the agreement between partitions. Such external validation indexes can be used to quantify how close the clusters are to a reference partition (or to prior knowledge about the data) by counting classified pairs of elements. To evaluate the solution of a fuzzy clustering algorithm, several extensions of the Rand index and other similarity measures to fuzzy partitions have been proposed. An extension of the ARI for fuzzy partitions based on the normalized degree of concordance is proposed. The performance of the proposed index is evaluated through Monte Carlo simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albatineh, A. N., & Niewiadomska-Bugaj, M. (2011). Correcting Jaccard and other similarity indices for chance agreement in cluster analysis. Advances in Data Analysis and Classification, 5(3), 179–200.

    Article  MathSciNet  Google Scholar 

  • Albatineh, A. N., Niewiadomska-Bugaj, M., & Mihalko, D. (2006). On similarity indices and correction for chance agreement. Journal of Classification, 23(2), 301–313.

    Article  MathSciNet  Google Scholar 

  • Anderberg, M. R. (1973). Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks, 1st edn. New York: Academic press.

    Google Scholar 

  • Anderson, D. T., Bezdek, J. C., Popescu, M., & Keller, J. M. (2010). Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Transactions on Fuzzy Systems, 18(5), 906–918.

    Article  Google Scholar 

  • Ben-Israel, A., & Iyigun, C. (2008). Probabilistic d-clustering. Journal of Classification, 25(1), 5–26.

    Article  MathSciNet  Google Scholar 

  • Berkhin, P. (2006). A survey of clustering data mining techniques, in Grouping multidimensional data. In Kogan, J., Nicholas, C., & Teboulle, M. (Eds.) (pp. 25–71). Berlin: Springer.

  • Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: the Fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2), 191–203.

    Article  Google Scholar 

  • Böck, H. H. (1974). Automatische Klassifikation, 1st edn. Göttingen: Vandenhoeck & Ruprecht.

    MATH  Google Scholar 

  • Brouwer, R. K. (2009). Extending the Rand, adjusted Rand and Jaccard indices to fuzzy partitions. Journal of Intelligent Information Systems, 32(3), 213–235.

    Article  Google Scholar 

  • Campello, R. J. (2007). A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28(7), 833–841.

    Article  Google Scholar 

  • Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Downton, M., & Brennan, T. (1980). Comparing classifications: an evaluation of several coefficients of partition agreement. Classification Society Bulletin, 4(4), 53–54.

    Google Scholar 

  • Duran, B. S., & Odell, P. L. (2013). Cluster analysis: a survey, 2nd edn. Heidelberg: Springer Science & Business Media.

    MATH  Google Scholar 

  • D’Urso, P. (2015). Fuzzy clustering, in Handbook of cluster analysis. In Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.) (pp. 545–574). Boca Raton: CRC Press, chap. 24.

  • Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis, 5th edn. Chichester: Wiley.

    Book  Google Scholar 

  • Fasulo, D. (1999). An analysis of recent work on clustering algorithms. Department of Computer Science & Engineering, University of Washington. Available at https://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.44.2946&rep=rep1&type=pdf.

  • Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78(383), 553–569.

    Article  Google Scholar 

  • Frigui, H., Hwang, C., & Rhee, F. C. -H. (2007). Clustering and aggregation of relational data with applications to image database categorization. Pattern Recognition, 40(11), 3053–3068.

    Article  Google Scholar 

  • Gower, J. C., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients. Journal of classification, 3(1), 5–48.

    Article  MathSciNet  Google Scholar 

  • Halkidi, M., Vazirgiannis, M., & Hennig, C. (2015). Method-independent indices for cluster validation and estimating the number of clusters. In Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.) Handbook of cluster analysis, chap. 26 (pp. 595–618). Boca Raton: CRC Press.

  • Hamann, U. (1961). Merkmalsbestand und Verwandtschaftsbeziehungen der Farinosae: ein beitrag zum system der Monokotyledonen (639–768). Willdenowia.

  • Han, J., Pei, J., & Kamber, M. (2012). Data mining: concepts and techniques, 3rd edn. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Hartigan, J. A. (1975). Clustering algorithms, 1st edn. New York: Wiley.

    MATH  Google Scholar 

  • Hennig, C., & Meila, M. (2015). Cluster analysis: an overview, in Handbook of cluster analysis. In Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (Eds.) (pp. 1–20). Boca Raton: CRC Press, chap. 1.

  • Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations. The Annals of Mathematical Statistics, 169–192.

  • Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition, 1st edn. Chichester: Wiley.

    MATH  Google Scholar 

  • Hubert, L. (1977). Nominal scale response agreement as a generalized correlation. British Journal of Mathematical and Statistical Psychology, 30(1), 98–103.

    Article  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  Google Scholar 

  • Hüllermeier, E., Rifqi, M., Henzgen, S., & Senge, R. (2012). Comparing fuzzy partitions: a generalization of the Rand index and related measures. IEEE Transactions on Fuzzy Systems, 20(3), 546–556.

    Article  Google Scholar 

  • Jaccard, P. (1901). Distribution de la Flore Alpine: dans le Bassin des dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37(140), 241–272.

    Google Scholar 

  • Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data, 1st edn. Englewood Cliffs: Prentice-Hall, Inc.

    MATH  Google Scholar 

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: an introduction to cluster analysis, 2nd. Hoboken: Wiley.

    MATH  Google Scholar 

  • Klement, E. P., Mesiar, R., & Pap, E. (2010). Triangular norms, 1st edn. Dordercht: Springer Science & Business Media.

    MATH  Google Scholar 

  • Kulczynski, S. (1927). Die pflanzenassociationen der pienenen. Bulletin International de l’académie Polonaise des Sciences et des letters, classe des sciences mathemátiques et naturelles, Serie B Supplement, II, 2, 57–203.

    Google Scholar 

  • Meilă, M. (2007). Comparing clusterings - an information based distance. Journal of Multivariate Analysis, 98(5), 873–895.

    Article  MathSciNet  Google Scholar 

  • Mirkin, B. (1998). Mathematical classification and clustering: from how to what and why. In Balderjahn, I., Mathar, R., & Schader, M. (Eds.) Classification, data analysis, and data highways (pp. 172–181). Heidelberg: Springer.

  • Morey, L. C., & Agresti, A. (1984). The measurement of classification agreement: an adjustment to the Rand statistic for chance agreement. Educational and Psychological Measurement, 44(1), 33–37.

    Article  Google Scholar 

  • Pesarin, F., & Salmaso, L. (2010a). The permutation testing approach: a review. Statistica, 70(4), 481–509.

    MATH  Google Scholar 

  • Pesarin, F., & Salmaso, L. (2010b). Permutation tests for complex data: theory, applications and software, 1st edn. Chippenham: Wiley.

    Book  Google Scholar 

  • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.

    Article  Google Scholar 

  • Ruspini, E. H. (1970). Numerical methods for fuzzy clustering. Information Sciences, 2(3), 319–350.

    Article  Google Scholar 

  • Spath, H. (1980). Cluster analysis algorithms for data reduction and classification of objects, 1st edn. Chichester: Ellis Horwood, Ltd.

    MATH  Google Scholar 

  • Stahl, D., & Sallis, H. (2012). Model-based cluster analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 4(4), 341–358.

    Article  Google Scholar 

  • Suleman, A. (2017). Assessing a fuzzy extension of Rand index and related measures. IEEE Transactions on Fuzzy Systems, 25(1), 237–244.

    Article  Google Scholar 

  • Warrens, M. J. (2008a). On association coefficients for 2× 2 tables and properties that do not depend on the marginal distributions. Psychometrika, 73(4), 777–789.

    Article  MathSciNet  Google Scholar 

  • Warrens, M. J. (2008b). On the equivalence of Cohen’s kappa and the Hubert-Arabie adjusted Rand index. Journal of Classification, 25(2), 177–183.

    Article  MathSciNet  Google Scholar 

  • Warrens, M. J., & van der Hoef, H. (2019). Understanding partition comparison indices based on counting object pairs. Available at arXiv:1901.01777.

Download references

Acknowledgments

The authors would like to thank both the Editor and an anonymuous reviewer, whose comments and remarks highly contributed to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D’Ambrosio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, A., Amodio, S., Iorio, C. et al. Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions. J Classif 38, 112–128 (2021). https://doi.org/10.1007/s00357-020-09367-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00357-020-09367-0

Keywords

Navigation