Skip to main content
Log in

Structural characterization and electrical properties of Ce1-xSmxO2-δ by sucrose-pectin–assisted auto combustion process

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ce1-xSmxO2-δ (x = 0.0, 0.1, 0.2, 0.3) samples were prepared by sucrose and pectin–assisted auto combustion method. The phase identification, morphology, spectroscopic properties, and electrical properties of the samples are studied by XRD, FESEM, Raman spectrometer, and impedance spectroscopy. Rietveld refinement was carried on XRD samples for structural properties. Samples showed a single phase with the cubic fluorite structure. The average crystallite size was in the range of 10–17 nm. The sample Ce0.8Sm0.2O2−δ exhibits improved conductivity with low activation energy in comparison with pure ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this article.

References

  1. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier publications, Netherlands

    Google Scholar 

  2. Inaba H, Tagawa H (1996) Ceria based solid electrolytes. Solid State Ionics 83(1–2):1–16. https://doi.org/10.1016/0167-2738(95)00229-4

    Article  CAS  Google Scholar 

  3. Dicks L (2000) Fuel cell systems explained. Wiley, London, p 166

    Google Scholar 

  4. Steele BCH (2000) Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129(1–4):95–110. https://doi.org/10.1016/S0167-2738(99)00319-7

    Article  CAS  Google Scholar 

  5. Kilner JA (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129(1–4):13–23. https://doi.org/10.1016/S0167-2738(99)00313-6

    Article  CAS  Google Scholar 

  6. Moure A, Moure C, Tartaj J (2011) A significant improvement of the processing and electric properties of CeO2 co-doped with Ca and Sm by mechano synthesis. J Power Sources 196:10543–10549. https://doi.org/10.1016/j.jpowsour.2011.07.088

    Article  CAS  Google Scholar 

  7. Pikalova EY, Murashkina AA, Maragou VI, Demin AK, Strekalovsky VN, Tsiakaras PE (2011) CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int J Hydrog Energy 36:6175–6183. https://doi.org/10.1016/j.ijhydene.2011.01.132

    Article  CAS  Google Scholar 

  8. Artini C, Carnasciali MM, Viviani M, Presto S, Plaisier JR, Costa GA, Pani M (2018) Structural properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. Solid State Ionics 315:85–91. https://doi.org/10.1016/j.ssi.2017.12.009

    Article  CAS  Google Scholar 

  9. Coduri M, Checchi S, Longhi M, Ceresoli D, Scavini M (2018) Rare earth doped ceria: the complex connection between structure and properties. Front Chem 6:526. https://doi.org/10.3389/fchem.2018.00526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M =Hf4+,Zr4+,,Ce4+,,Th4+,,U4+,] solid solutions. J Am Ceram Soc 72:1415–1421. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x

    Article  CAS  Google Scholar 

  11. Avila-Paredes HJA, Shvareva T, Chen W, Navrotskyab A, Kim S (2009) A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. Phys Chem Chem Phys 11:8580–8585. https://doi.org/10.1039/B821982F

    Article  CAS  PubMed  Google Scholar 

  12. Presto S, Artini C, Pani M, Carnasciali MM, Massardo S, Viviani M (2018) Ionic conductivity and local structural features in Ce1-xSmxO2-x/2.Phys. Chem Chem Phys 20:28338–28345. https://doi.org/10.1039/c8cp04186e

    Article  CAS  Google Scholar 

  13. Ismail A, Hooper J, Giorgi JB, Woo TK (2011) A DFT+U study of defect association and oxygen migration in samarium-doped ceria. Phys Chem Chem Phys 13:6116–6124. https://doi.org/10.1039/c0cp02062a

    Article  CAS  PubMed  Google Scholar 

  14. Kosinski MR, Baker RT (2011) Preparation and property–performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes. J Power Sources 196:2498–2512. https://doi.org/10.1016/j.jpowsour.2010.11.041

    Article  CAS  Google Scholar 

  15. Omer S, Wachsman ED, Nino JC (2006) A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ionics 177:3199–3208. https://doi.org/10.1016/j.ssi.2006.08.014

    Article  CAS  Google Scholar 

  16. Zha S, Xia C, Meng G (2003) Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources 115:44–48. https://doi.org/10.1016/S0378-7753(02)00625-0

    Article  CAS  Google Scholar 

  17. Huang W, Shuk P, Greenblatt M (1997) Hydrothermal synthesis and properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x solid solutions. Chem Mater 9(10):2240–2245. https://doi.org/10.1021/cm970425t

    Article  CAS  Google Scholar 

  18. Wang SF, Yeh CT, Wang YR, Wu YC (2013) Characterization of samarium-doped ceria powders prepared by hydrothermal synthesis for use in solid state oxide fuel cells. J Mater Res Technol 2(2):141–148. https://doi.org/10.1016/j.jmrt.2013.01.004

    Article  CAS  Google Scholar 

  19. Wang Y, Mori T, Li JG, Yajima Y (2003) Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics. Sci Technol Adv Mater 4(3):229–238. https://doi.org/10.1016/S1468-6996(03)00051-2

    Article  CAS  Google Scholar 

  20. Huang W, Shuk P, Greenblatt M (1997) Properties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolytes. Solid State Ionics 100:23–27. https://doi.org/10.1016/S0167-2738(97)00309-3

    Article  CAS  Google Scholar 

  21. Li H, Xia C, Zhu M, Zhou Z, Meng G (2006) Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: sintering and electrical characteristics. Acta Mater 54:721–727. https://doi.org/10.1016/j.actamat.2005.10.004

    Article  CAS  Google Scholar 

  22. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172. https://doi.org/10.1016/0167-2738(92)90102-U

    Article  CAS  Google Scholar 

  23. Karaca T, Altınçekiç TG, Öksüzömer MF (2010) Synthesis of nanocrystalline samarium-doped CeO2 (SDC) powders as a solid electrolyte by using a simple solvothermal route. Ceram Int 36:1101–1107s. https://doi.org/10.1016/j.ceramint.2009.12.005

    Article  CAS  Google Scholar 

  24. Suciua C, Gageab L, Hoffmanna AC, Moceanb M (2006) Sol–gel production of zirconia nanoparticles with a new organic precursor. Chem Eng Sci 61(24):7831–7835. https://doi.org/10.1016/j.ces.2006.09.006

    Article  CAS  Google Scholar 

  25. Wang Z, Kale GM, Ghadiri M (2011) Maltose and pectin assisted sol–gel production of Ce0.8 Gd 0.2O1.9 solid electrolyte nanopowders for solid oxide fuel cells. J Mater Chem 21:16494–16499. https://doi.org/10.1039/C1JM12344K

    Article  CAS  Google Scholar 

  26. Omer S, Wachsman ED, Jones JL, Nino JC (2009) Crystal structure–ionic conductivity relationships in doped ceria systems. J Am Ceram Soc 92:2674–2681. https://doi.org/10.1111/j.1551-2916.2009.03273.x

    Article  CAS  Google Scholar 

  27. Lutterolti L, Scardi P, Maistrelli P (1992) LSI-a computer program for simultaneous refinement of material structure and microstructure. J Appl Crystallogr 25:459–462. https://doi.org/10.1107/S0021889892001122

    Article  Google Scholar 

  28. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  29. Popa NC (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr 31:176–180. https://doi.org/10.1107/S0021889897009795

    Article  CAS  Google Scholar 

  30. Weber WH, Hass KC, McBride JR (1993) Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects. Phys Rev B 48(1):178–185. https://doi.org/10.1103/PhysRevB.48.178

    Article  CAS  Google Scholar 

  31. Balaguer M, Solís C, Serra JM (2012) Structural−transport properties relationships on Ce1−x LnxO2−δ system (Ln=Gd,La,Tb,Pr,Eu,Er,Yb,Nd) and effect of cobalt addition. J Phys Chem C 116(14):7975–7982. https://doi.org/10.1021/jp211594d

    Article  CAS  Google Scholar 

  32. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and x-ray studies of Ce1−x RExO2−y, where RE=La, Pr, Nd, Eu,Gd, and Tb. J Appl Phys 764:2435–2441. https://doi.org/10.1063/1.357593

    Article  Google Scholar 

  33. Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN Preparation and characterization of Ce1-xSmxO2-d (x = 0.1-0.3) as electrolyte material for intermediate temperature SOFC. Solid State Sci 26:89–96. https://doi.org/10.1016/j.solidstatesciences.2013.09.015

  34. Bauerle JE (1969) Study of solid electrolyte polarization by a complex admittance method. J Phys Chem Solids 30(12):2657–2670. https://doi.org/10.1016/0022-3697(69)90039-0

    Article  CAS  Google Scholar 

  35. Kuharuangrong S (2007) Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources 171:506–510. https://doi.org/10.1016/j.jpowsour.2007.05.104

    Article  CAS  Google Scholar 

  36. Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–1897. https://doi.org/10.1016/j.ssi.2007.12.069

    Article  CAS  Google Scholar 

  37. Arabaci A, Serin Ö (2015) Characterization of Sm-doped ceria ceramics synthesized by two different method. J Mater Eng Perform 24:2730–2737. https://doi.org/10.1007/s11665-015-1563-5

    Article  CAS  Google Scholar 

  38. Peng C, Wang Y, Jiang K, Bin BQ, Liang HW, Feng J, Meng J (2003) Study on the structure change and oxygen vacation shift for Ce1−xSmxO2−y solid solution. JALCOM 349:273–278. https://doi.org/10.1016/S0925-8388(02)00903-9

    Article  CAS  Google Scholar 

  39. Wu YC, Lin CC (2014) The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment. Int J Hydrog Energy 7988–8001. https://doi.org/10.1016/j.ijhydene.2014.03.063

  40. Venkataramana K, Madhuri C, Suresh Reddy Y, Bikshamaiah G, Vishnuvardhan Rddy C (2017) Structural, electrical and thermal expansion studies of tri-doped ceria electrolyte materials for IT-SOFCs. JALCOM 719:97–107. https://doi.org/10.1016/j.jallcom.2017.05.022

    Article  CAS  Google Scholar 

  41. Gupta M, Shirbhate S, Ojha P, Acharya S (2018) Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: as electrolytes for IT-SOFCs. Solid State Ionics 320:199–209. https://doi.org/10.1016/j.ssi.2018.03.005

    Article  CAS  Google Scholar 

  42. Arabacı A (2020) Effect of the calcination temperature on the properties of Sm-doped CeO2. Emerg Mater Res 9:1–9. https://doi.org/10.1680/jemmr.18.00082

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. K. James Raju from the University of Hyderabad for providing experimental facilities

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the present research article. Material preparation, and data collection and analysis were performed by Ramesh S and Rajitha G. The first draft of the manuscript was written by Ramesh S, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Rajitha, G. Structural characterization and electrical properties of Ce1-xSmxO2-δ by sucrose-pectin–assisted auto combustion process. Ionics 26, 5089–5098 (2020). https://doi.org/10.1007/s11581-020-03658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03658-7

Keywords

Navigation