Skip to main content
Log in

Observer-Based Adaptive Fuzzy Control for Intelligent Ship Autopilot with Input Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the design problem of intelligent ship autopilot with unmeasured yaw rate and input saturation is investigated based on adaptive fuzzy control. First, an adaptive fuzzy output feedback controller is proposed, then, to improve the convergence speed of the tracking error in the sense of finite time, a finite-time adaptive fuzzy output feedback controller is also designed to improve the control performance. By employing fuzzy logic system (FLS) to estimate the unknown nonlinear function, an adaptive fuzzy state observer is designed to estimate the unmeasured state. An adaptation auxiliary signal for input saturation is also established to compensate the mismatch between the controller signal and the actuator signal. Combining state observer model with backstepping method, two different adaptive fuzzy output-feedback controllers with composite parameter adaptive laws are constructed, respectively. Based on Lyapunov theory, it is proved that all signals in the closed-loop systems are bounded. Finally, the simulation results are conducted to demonstrate the effectiveness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nejim, S.: Design of limited authority adaptive ship steering autopilots. Int. J. Adapt. Control Signal Process 14(4), 381–391 (2000)

    Article  Google Scholar 

  2. Van, A.: Adaptive steering of ships: a model reference approach. Automatica 20(1), 3–14 (1984)

    Article  Google Scholar 

  3. Tung, L.: Design a ship autopilot using neural network. J. Ship Prod. Des. 33(3), 192–196 (2017)

    Article  Google Scholar 

  4. Sutton, R., Roberts, G., Taylor, S.: Tuning fuzzy ship autopilots using artificial neural networks. Trans. Inst. Meas. Control 19(2), 94–106 (1997)

    Article  Google Scholar 

  5. Yang, Y., Ren, J.: Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 11(6), 783–795 (2003)

    Article  Google Scholar 

  6. Yang, Y.: Model reference fuzzy adaptive control of ship course nonlinear system. Shipbuild. China 44(3), 85–93 (2003)

    Google Scholar 

  7. Bai, W., Zhou, Q., Li, T., Li, H.: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2921057

    Article  Google Scholar 

  8. Li, R., Cao, J., Li, T.: Active disturbance rejection control design and parameters conguration for ship steering with wave disturbance. Control Theory Appl. 35(11), 1601–1609 (2018)

    MATH  Google Scholar 

  9. Chang, C., Chang, W.: Robust fuzzy control with transient and steady-state performance constraints for ship fin stabilizing systems. Int. J. Fuzzy Syst. 21(2), 518–531 (2019)

    Article  MathSciNet  Google Scholar 

  10. Wang, N., Sun, Z., Su, S.: Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodeled dynamics and disturbances. Int. J. Fuzzy Syst. 20(8), 2593–2604 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, Z., Peng, X.: Control of ship course based on NN-adaptive output feedback. Trans. Beijing Inst. Technol. 31(4), 425–429 (2011)

    MathSciNet  Google Scholar 

  12. Zheng, Y., Li, J., Li, R.: Output feedback control design for ship’s course keeping nonlinear system based on state observer. Proceedings of the 29th Chinese Control Conference, 606-609 (2010)

  13. Peng, X., Hu, Z.: Adaptive nonlinear output feedback control with wave filter for ship course. Control Theory Appl. 30(7), 863–868 (2013)

    Google Scholar 

  14. Zheng, Z., Sun, L., Xie, L.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. 48(10), 1794–1805 (2017)

    Article  Google Scholar 

  15. Li, J., Li, T., Fan, Z., Bu, R., Hu, J.: Direct adaptive NN control of ship course autopilot with input saturation. The Fourth International Workshop on Advanced Computational Intelligence 655–661, (2012)

  16. Qin, H., Chen, H., Sun, Y., Wu, Z.: The distributed adaptive finite-time chattering reduction containment control for multiple ocean bottom flying nodes. Int. J. Fuzzy Syst. 21(2), 607–619 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018)

    Article  Google Scholar 

  18. Khoo, S., Yin, J., Man, Z., Yu, X.: Finite-time stabilization of stochastic nonlinear systems in strict-feedback form. Automatica 49(5), 1403–1410 (2013)

    Article  MathSciNet  Google Scholar 

  19. Sun, Y., Chen, B., Lin, C., Wang, H.: Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Trans. Cybern. 48(10), 2774–2782 (2018)

    Article  Google Scholar 

  20. Li, T., Wang, D., Feng, G., Tong, S.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man. Cybern. Part B 40(3), 915–927 (2010)

    Article  Google Scholar 

  21. Wang, L.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Article  Google Scholar 

  22. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    Article  MathSciNet  Google Scholar 

  23. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)

    Article  Google Scholar 

  24. Tong, S., Min, X., Li, Y.: Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2977175

    Article  Google Scholar 

  25. Tong, S., Sun, K., Sui, S.: Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(2), 569–584 (2018)

    Article  Google Scholar 

  26. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Article  Google Scholar 

  27. Qian, C., Lin, W.: Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    Article  MathSciNet  Google Scholar 

  28. Hardy, H., Littlewood, E., Polya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1952)

    MATH  Google Scholar 

  29. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for mimo nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. 26(5), 1851–1859 (2018)

    Article  Google Scholar 

  31. Bai, W., Li, T., Tong, S.: NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2963849

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by the National Natural Science Foundation of China (under Grant Nos. 51939001, 61976033, U1813203, 61803064, 61751202, 61903092); the Science and Technology Innovation Funds of Dalian (under Grant No. 2018J11CY022); the Liaoning Revitalization Talents Program (under Grant Nos. XLYC1908018, XLYC1807046); the Natural Foundation Guidance Plan Project of Liaoning (2019-ZD-0151); the Fundamental Research Funds for the Central Universities (under Grant No. 3132019345); the Natural Science Foundation of Liaoning Province under Grant 20170540098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Li, T., Yu, R. et al. Observer-Based Adaptive Fuzzy Control for Intelligent Ship Autopilot with Input Saturation. Int. J. Fuzzy Syst. 22, 1416–1429 (2020). https://doi.org/10.1007/s40815-020-00880-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00880-3

Keywords

Navigation