Skip to main content
Log in

Stress response function from Voronoi tessellation of static granular layers

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A new technique to obtain the stress response function of static granular layers from the geometric properties of the corresponding Voronoi tessellations is presented. We measured the vertex displacements of the Voronoi polygons due to the application of a vertical force located on the surface of the layer. A protocol to obtain the stress response function is proposed by establishing a gauge between the geometric measurements and the contact forces, which allows to calculate the stress components indirectly. We show that the Voronoi tessellation response function—VTRF—exhibits the elastic characteristics of additivity, reversibility and linearity as the stress response function. Thus, we applied this protocol to calculate the stress response profiles of two different preparations and to compare them with the results obtained from microscopic measurements, that is, the stress response calculated using contact forces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hinrichsen, H., Wolf, D.E.: The Physics of Granular Media. Wiley, Hoboken (2006)

    Google Scholar 

  2. Iwashita, K., Oda, M.: Mechanics of Granular Materials: An Introduction. CRC Press, London (1999)

    Google Scholar 

  3. Bouchaud, J.-P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3(2), 141–151 (2002)

    ADS  Google Scholar 

  4. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Combe, G., Claudin, P., Behringer, R.P., Clément, E.: Sensitivity of the stress response function to packing preparation. J. Phys.: Condens. Matter 17(24), S2391 (2005)

    ADS  Google Scholar 

  5. Daniels, K.E., Bauer, C., Shinbrot, T.: Correlations between electrical and mechanical signals during granular stick-slip events. Granular Matter 16(2), 217–222 (2014)

    Google Scholar 

  6. Arthur, J.R.F., Dunstan, T., Al-Ani, Q.A.J.L., Assadi, A.: Plastic deformation and failure in granular media. Géotechnique 27(1), 53–74 (1977)

    Google Scholar 

  7. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31(6), 407–429 (1999)

    Google Scholar 

  8. Herrmann, H.J., Luding, S.: Modeling granular media on the computer. Continuum Mech. Thermodyn. 10(4), 189–231 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  9. Einav, I.: Breakage mechanics–part ii: Modelling granular materials. J. Mech. Phys. Solids 55(6), 1298–1320 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  10. Luding, S.: Cohesive, frictional powders: contact models for tension. Granular Matter 10(4), 235 (2008)

    MathSciNet  MATH  Google Scholar 

  11. de Gennes, P.-G.: Granular matter: a tentative view. Rev. Mod. Phys. 71(2), S374 (1999)

    Google Scholar 

  12. Šmid , J., Novosad, J.: Pressure distribution under heaped bulk solids. i. Chem. e. Symposium series, 63: D3. Technical report, V/1–12 (1981)

  13. Brockbank, R., Huntley, J.M., Ball, R.C.: Contact force distribution beneath a three-dimensional granular pile. J. Phys. II 7(10), 1521–1532 (1997)

    Google Scholar 

  14. Vanel, L., Howell, D., Clark, D., Behringer, R.P., Clément, E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60(5), R5040 (1999)

    ADS  Google Scholar 

  15. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3), 035506 (2001)

    ADS  Google Scholar 

  16. Geng, J., Reydellet, G., Clément, E., Behringer, R.P.: Green’s function measurements of force transmission in 2d granular materials. Physica D: Nonlinear Phenom. 182(3), 274–303 (2003)

    MATH  ADS  Google Scholar 

  17. Atman, A.P.F., Claudin, P., Combe, G., Mari, R.: Mechanical response of an inclined frictional granular layer approaching unjamming. EPL (Europhys. Lett.) 101(4), 44006 (2013)

    ADS  Google Scholar 

  18. Atman, A.P.F., Claudin, P., Combe, G., Martins, G.H.B.: Mechanical properties of inclined frictional granular layers. Granul. Matter 16(2), 193–201 (2014)

    Google Scholar 

  19. Serero, D., Reydellet, G., Claudin, P., Clément, É., Levine, D.: Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur. Phys. J. E 6(2), 169–179 (2001)

    Google Scholar 

  20. Goldenberg, C., Goldhirsch, I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89(8), 084302 (2002)

    ADS  Google Scholar 

  21. Reydellet, G., Clément, E.: Green’s function probe of a static granular piling. Phys. Rev. Lett. 86, 3308–3311 (2001)

    ADS  Google Scholar 

  22. Zheng, H., Wang, D., Tong, X., Li, L., Behringer, R.P.: Granular scale responses in the shear band region. Granul. Matter 21(4), 107 (2019)

    Google Scholar 

  23. Otto, M., Bouchaud, J.-P., Claudin, P., Socolar, J.E.S.: Anisotropy in granular media: classical elasticity and directed-force chain network. Phys. Rev. E 67, 031302 (2003)

    ADS  Google Scholar 

  24. Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841 (1998)

    ADS  Google Scholar 

  25. Kasahara, A., Nakanishi, H.: Isostaticity and mechanical response of two-dimensional granular piles. Phys. Rev. E 70(5), 051309 (2004)

    ADS  Google Scholar 

  26. Head, D.A., Tkachenko, A.V., Witten, T.A.: Robust propagation direction of stresses in a minimal granular packing. Eur. Phys. J. E 6(1), 99–105 (2001)

    Google Scholar 

  27. Breton, L., Claudin, P., Clément, E., Zucker, J.-D.: Stress response function of a two-dimensional ordered packing of frictional beads. EPL (Europhys. Lett.) 60(6), 813 (2002)

    ADS  Google Scholar 

  28. Mehta, A.: Granular Physics. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  29. Pugnaloni, L.A., Sánchez, I., Gago, P.A., Damas, J., Zuriguel, I., Maza, D.: Towards a relevant set of state variables to describe static granular packings. Phys. Rev. E 82, 050301 (2010)

    ADS  Google Scholar 

  30. Claudin, P.: Static properties of granular materials. In: Mehta, A. (ed.) Granular Physics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  31. Goldenberg, C., Atman, A.P.F., Claudin, P., Combe, G., Goldhirsch, I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96(16), 168001 (2006)

    ADS  Google Scholar 

  32. Bouchaud, J.-P., Cates, M.E., Claudin, P.: Stress distribution in granular media and nonlinear wave equation. J. Phys. I 5(6), 639–656 (1995)

    Google Scholar 

  33. Wittmer, J.P., Claudin, P., Cates, M.E., Bouchaud, J.-P.: An explanation for the central stress minimum in sand piles. Nature 382(6589), 336 (1996)

    ADS  Google Scholar 

  34. Wittmer, J.P., Cates, M.E., Claudin, P.: Stress propagation and arching in static sandpiles. J. Phys. I 7(1), 39–80 (1997)

    Google Scholar 

  35. Bouchaud, J.-P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3(2), 141–151 (2002)

    ADS  Google Scholar 

  36. Melo, F., Umbanhowar, P., Swinney, H.L.: Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72(1), 172 (1994)

    ADS  Google Scholar 

  37. Umbanhowar, P.B., Melo, F., Swinney, H.L., et al.: Localized excitations in a vertically vibrated granular layer. Nature 382(6594), 793–796 (1996)

    ADS  Google Scholar 

  38. Mello, N.M.P., Paiva, H.A., Combe, G., Atman, A.P.F.: Fingering phenomena during grain–grain displacement. Comput. Part. Mech. 4(2), 153–164 (2017)

    Google Scholar 

  39. Bassett, D.S., Owens, E.T., Porter, M.A., Manning, M.L., Daniels, K.E.: Extraction of force-chain network architecture in granular materials using community detection. Soft Matter 11(14), 2731–2744 (2015)

    ADS  Google Scholar 

  40. Tordesillas, A., Walsh, D.C.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124(1), 106–111 (2002)

    Google Scholar 

  41. Cizeau, P., Makse, H.A., Eugene Stanley, H.: Mechanisms of granular spontaneous stratification and segregation in two-dimensional silos. Phys. Rev. E 59(4), 4408 (1999)

    ADS  Google Scholar 

  42. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32(1), 55–91 (2000)

    MathSciNet  MATH  ADS  Google Scholar 

  43. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)

    MATH  Google Scholar 

  44. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  45. Shäfer, J., Dippel, S., Wolf, D.E.: Force schemes in simulations of granular materials. J. Phys. I 6(1), 5–20 (1996)

    Google Scholar 

  46. Magalhaes, C.F.M., Moreira, J.G., Atman, A.P.F.: Catastrophic regime in the discharge of a granular pile. Phys. Rev. E 82(5), 051303 (2010)

    ADS  Google Scholar 

  47. Atman, A.P.F., Claudin, P., Combe, G.: Departure from elasticity in granular layers: investigation of a crossover overload force. Comput. Phys. Commun. 180(4), 612–615 (2009)

    ADS  Google Scholar 

  48. Pöschel, T., Schwager, T.: Computational Granular Dynamics: Models and Algorithms. Springer, New York (2005)

    Google Scholar 

  49. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, vol. 501. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  50. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  51. Ramos, O., Altshuler, E., Måløy, K.J.: Avalanche prediction in a self-organized pile of beads. Phys. Rev. Lett. 102(7), 078701 (2009)

    ADS  Google Scholar 

  52. Pelusi, F., Sbragaglia, M., Benzi, R.: Avalanche statistics during coarsening dynamics. Soft Matter 15(22), 4518–4524 (2019)

    ADS  Google Scholar 

  53. Guo, N., Zhao, J.: Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Phys. Rev. E 89(4), 042208 (2014)

    ADS  Google Scholar 

  54. Zhao, S., Zhao, J., Guo, N.: Universality of internal structure characteristics in granular media under shear. Phys. Rev. E 101(1), 012906 (2020)

    ADS  Google Scholar 

  55. Morse, P.K., Corwin, E.I.: Geometric order parameters derived from the voronoi tessellation show signatures of the jamming transition. Soft Matter 12(4), 1248–1255 (2016)

    ADS  Google Scholar 

  56. Morse, P.K., Corwin, E.I.: Geometric signatures of jamming in the mechanical vacuum. Phys. Rev. Lett. 112(11), 115701 (2014)

    ADS  Google Scholar 

  57. Boaventura, E., Ducha, F., Atman, A.P.F.: Jamming transition evinced by voronoi tessellation. In: EPJ Web of Conferences (2017)

  58. Zhao, Y., Barés, J., Zheng, H., Bester, C.S., Xu, Y., Socolar, J.E.S., Behringer, R.P.: Jamming transition in non-spherical particle systems: pentagons versus disks. Granul. Matter 21(4), 90 (2019)

    Google Scholar 

  59. Seblany, F., Homberg, U., Vincens, E., Winkler, P., Witt, K.J.: Merging criteria for defining pores and constrictions in numerical packing of spheres. Granul. Matter 20(3), 37 (2018)

    Google Scholar 

  60. Fortune, S.: A sweepline algorithm for voronoi diagrams. Algorithmica 2(1–4), 153–174 (1987)

    MathSciNet  MATH  Google Scholar 

  61. Skiena, S.S.: The Algorithm Design Manual: Text, vol. 1. Springer, New York (1998)

    MATH  Google Scholar 

  62. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on Foundations of Computer Science, pp. 151–162. IEEE (1975)

  63. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Trans. Graph. (TOG) 4(2), 74–123 (1985)

    MATH  Google Scholar 

  64. Dwyer, R.A.: A faster divide-and-conquer algorithm for constructing delaunay triangulations. Algorithmica 2(1–4), 137–151 (1987)

    MathSciNet  MATH  Google Scholar 

  65. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    MathSciNet  MATH  Google Scholar 

  66. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)

    MATH  Google Scholar 

  67. A Python wrapper to Qhull for the computation of the convex hull, Delaunay triangulation and Voronoi diagram. Accessed 2016 May 12. https://pypi.python.org/pypi/pyhull

  68. Matrials Virtual Lab. Accessed 2016 May 12. https://github.com/materialsvirtuallab/pyhull

  69. Pyhull 1.5.4 Documentation. Accessed 2016 May 12. https://pythonhosted.org/pyhull/

  70. Combe, G., Richefeu, V.: Tracker: A particle image tracking (pit) technique dedicated to nonsmooth motions involved in granular packings. AIP Conf. Proc. 1542(1), 461–464 (2013)

    ADS  Google Scholar 

  71. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  72. Atman, A.P.F., Claudin, P., Combe, G., Goldenberg, C., Goldhirsch, I.: Transitions in the response of a granular layer. AIP Conf. Proc. 1145(1), 492–495 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to Prof. Luis Pugnaloni for the helpful suggestions in his referee report which improved considerably this work. E.C.B. wish to acknowledge the support given by CEFET-MG and A.P.F. Atman thanks FAPEMIG Brazilian funding agency and CNPq Research Grant 308792/2018-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Célio Boaventura.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boaventura, E.C., Ducha, F.A. & Atman, A.P.F. Stress response function from Voronoi tessellation of static granular layers. Granular Matter 22, 61 (2020). https://doi.org/10.1007/s10035-020-01026-w

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01026-w

Keywords

Navigation