Skip to main content
Log in

Functionalized cobalt ferrite cubes: toxicity, interactions and mineralization into ferritin proteins

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In the biological environment, the fate of nanomaterials characterizes as critical matter, which regulates environmental effects and associated hazards for humans. Understanding of the nanoparticle’s degradation, transformations and persistence may predict these risks. Safely designed inorganic nanomaterials are being focused for therapy; yet, fundamental processing in the biological environment and physical properties have not been assessed thoroughly. In this research work, bare, polyethylene glycol and citrate-coated cobalt ferrite nanoparticles (NPs) are prepared through modified chemical coprecipitation method. Structural, elemental, magnetic and morphological analysis of synthesized samples are performed through XRD, EDX, FTIR, VSM, SEM and TEM. XRD confirms the cubic structure of CoFe2O4 with crystallite size 25.75 nm. SEM and TEM confirm the formation of faceted cube-like morphology. For in vivo toxicity studies, a single dose of bare and coated cobalt ferrite NPs are intraperitoneally administrated in healthy albino rats. The degradation effects are studied through optical follow-up, by introducing bare and coated NPs in lysosomal-like media where changes in behavior are linked with transformations in vivo. Transfer of degraded ions of cobalt ferrite NPs into apoferritin are also evaluated. Apoferritin studies reveal partial filling of protein with cobalt ions from cobalt ferrite NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abakumov MA et al (2018) Toxicity of iron oxide nanoparticles: size and coating effects. J Biochem Mol Toxicol 32:e22225

    Google Scholar 

  • Abudayyak M, Gurkaynak TA, Özhan G (2017) vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol Trace Elem Res 175:458–465

    CAS  Google Scholar 

  • Ahmad F, Zhou Y (2017) Pitfalls and challenges in nanotoxicology: a case of cobalt ferrite (CoFe2O4) nanocomposites. Chem Res Toxicol 30:492–507

    CAS  Google Scholar 

  • Ajroudi L, Mliki N, Bessais L, Madigou V, Villain S, Leroux C (2014) Magnetic, electric and thermal properties of cobalt ferrite nanoparticles. Mater Res Bull 59:49–58

    CAS  Google Scholar 

  • Akhtar S et al (2018) Toxicity of PEG-coated CoFe 2 O 4 nanoparticles with treatment effect of curcumin. Nanoscale Res Lett 13:52

    Google Scholar 

  • Akhtar S et al (2019) A comparative study of the toxicity of polyethylene glycol-coated cobalt ferrite nanospheres and nanoparticles. Nanoscale Res Lett 14:386

    CAS  Google Scholar 

  • Al Lehyani S, Hassan R, Alharbi A, Alomayri T, Alamri H (2017) Magnetic hyperthermia using cobalt ferrite nanoparticles: the influence of particle size. Int J Adv Technol 8:1000196–1000201

    Google Scholar 

  • Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16

    CAS  Google Scholar 

  • Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96

    CAS  Google Scholar 

  • Bregar VB, Lojk J, Šuštar V, Veranič P, Pavlin M (2013) Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. Int J Nanomed 8:919

    Google Scholar 

  • Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126:182–194

    CAS  Google Scholar 

  • Cho W-S et al (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn 2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27

    CAS  Google Scholar 

  • Colognato R, Bonelli A, Bonacchi D, Baldi G, Migliore L (2007) Analysis of cobalt ferrite nanoparticles induced genotoxicity on human peripheral lymphocytes: comparison of size and organic grafting-dependent effects. Nanotoxicology 1:301–308

    CAS  Google Scholar 

  • Darwish MS, Kim H, Lee H, Ryu C, Lee JY, Yoon J (2019) Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials 9:1176

    CAS  Google Scholar 

  • L Ding H, X Zhang Y, H Li G (2014) Recent research progress on magnetic nanocomposites with silica shell structures preparation and nanotheranostic applications. Recent Pat Nanotechnol 8:117–128

    Google Scholar 

  • El-Sayed AA, Hussein MM, Soliman AH (2018) Naringenin and hesperidin ameliorate iron oxide nanoparticles toxicity in rat liver. Arab J Med Sci 1(1):26–30

    Google Scholar 

  • Ezzaier H, Marins J, Claudet C, Hemery G, Sandre O, Kuzhir P (2018) Kinetics of aggregation and magnetic separation of multicore iron oxide nanoparticles: effect of the grafted layer thickness. Nanomaterials 8:623

    Google Scholar 

  • Fan XA, Guan J, Cao X, Wang W, Mou F (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of substoichiometric spinel cobalt ferrite octahedra. Eur J Inorg Chem 3:419–426

    Google Scholar 

  • Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082

    Google Scholar 

  • Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1− xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321:2170–2177

    Google Scholar 

  • Gul I, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloys Compd 465:227–231

    CAS  Google Scholar 

  • Hankiewicz J et al (2019) Nano-sized ferrite particles for magnetic resonance imaging thermometry. J Magn Magn Mater 469:550–557

    CAS  Google Scholar 

  • Horev-Azaria L et al (2013) Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part Fibre Toxicol 10:32

    CAS  Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    CAS  Google Scholar 

  • Jaiswal MK, Gogoi M, Sarma HD, Banerjee R, Bahadur D (2014) Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models. Biomater Sci 2:370–380

    CAS  Google Scholar 

  • Javed Y et al (2014) Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small 10:3325–3337. https://doi.org/10.1002/smll.201400281

    Article  CAS  Google Scholar 

  • Kapilevich L et al (2010) Effect of nanodisperse ferrite cobalt (CoFe2O4) particles on contractile reactions in guinea pigs airways. Bull Exp Biol Med 149:70

    CAS  Google Scholar 

  • Kidosaki T, Takase S, Shimizu Y (2012) Electrodeposited cobalt-iron alloy thin-film for potentiometric hydrogen phosphate-ion sensor. J Sens Technol 2:95

    Google Scholar 

  • Klostergaard J, Seeney CE (2012) Magnetic nanovectors for drug delivery. Maturitas 73:33–44

    CAS  Google Scholar 

  • Kolosnjaj-Tabi J et al (2015) The one year fate of iron oxide coated gold nanoparticles in mice Acs. NANO 9:7925–7939. https://doi.org/10.1021/acsnano.5b00042

    Article  CAS  Google Scholar 

  • Krishna R, Titus E, Chandra S, Bardhan NK, Krishna R, Bahadur D, Gracio J (2012) Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles. J Nanosci Nanotechnol 12:6631–6638

    CAS  Google Scholar 

  • Kumar V, Rana A, Yadav M, Pant R (2008) Size-induced effect on nano-crystalline CoFe2O4. J Magn Magn Mater 320:1729–1734

    CAS  Google Scholar 

  • Kumari M, Rajak S, Singh SP, Murty US, Mahboob M, Grover P, Rahman MF (2013) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36:296–305

    CAS  Google Scholar 

  • Lartigue L et al (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring Acs. NANO 7:3939–3952

    CAS  Google Scholar 

  • Lee DS, Kim S (2012) Gene expression profiles for genotoxic effects of silica-free and silica-coated cobalt ferrite nanoparticles. J Nucl Med 53:106–112

    Google Scholar 

  • Li L, Mak K, Leung C, Chan K, Chan W, Zhong W, Pong P (2013) Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron Eng 110:329–334

    CAS  Google Scholar 

  • Liu N et al (2013) Degradation of aqueous synthesized CdTe/ZnS quantum dots in mice: differential blood kinetics and biodistribution of cadmium and tellurium. Part Fibre Toxicol 10:37

    Google Scholar 

  • López-Ortega A, Lottini E, Fernández CdJ, Sangregorio C (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27:4048–4056. https://doi.org/10.1021/acs.chemmater.5b01034

    Article  CAS  Google Scholar 

  • Margabandhu M, Sendhilnathan S, Senthilkumar S, Gajalakshmi D (2016) Investigation of structural, morphological, magnetic properties and biomedical applications of Cu2+ substituted uncoated cobalt ferrite nanoparticles. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016161046

    Article  Google Scholar 

  • Markova-Deneva I (2010) Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method. J Univ Chem Technol Metall 45:351–378

    CAS  Google Scholar 

  • Marmorato P et al (2011) Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol Lett 207:128–136

    CAS  Google Scholar 

  • Millot N, Le Gallet S, Aymes D, Bernard F, Grin Y (2007) Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis. J Eur Ceram Soc 27:921–926

    CAS  Google Scholar 

  • Mody P et al (2016) Protein-based ferrogels. J Inorg Biochem 159:7–13

    CAS  Google Scholar 

  • Morais P, Santos R, Pimenta A, Azevedo R, Lima E (2006) Preparation and characterization of ultra-stable biocompatible magnetic fluids using citrate-coated cobalt ferrite nanoparticles. Thin Solid Films 515:266–270

    CAS  Google Scholar 

  • Mosaiab T et al (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng: C 33:3786–3794

    CAS  Google Scholar 

  • Nadeem M et al (2016) Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. PLoS ONE 11:e0158084

    Google Scholar 

  • Namanga J, Foba J, Ndinteh DT, Yufanyi DM, Krause RWM (2013) Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. J Nanomater 2013:1–8

    Google Scholar 

  • Nikumbh A, Pawar R, Nighot D, Gugale G, Sangale M, Khanvilkar M, Nagawade A (2014) Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 355:201–209

    CAS  Google Scholar 

  • Rajendran M, Pullar R, Bhattacharya A, Das D, Chintalapudi S, Majumdar C (2001) Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232:71–83

    CAS  Google Scholar 

  • Rana S, Philip J, Raj B (2010) Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using fourier transform infrared transmission spectrometry and thermogravimetry. Mater Chem Phys 124:264–269

    CAS  Google Scholar 

  • Rouhani AR, Esmaeil-Khanian AH, Davar F, Hasani S (2018) The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method international. J Appl Ceram Technol 15:758–765

    CAS  Google Scholar 

  • Salunkhe A, Khot V, Thorat N, Phadatare M, Sathish C, Dhawale D, Pawar S (2013) Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl Surf Sci 264:598–604

    CAS  Google Scholar 

  • Samaniego-Benitez JE, Ramírez-Aparicio J, Chavez-Urbiola I, Garcia-Garcia A, Perez-Robles JF, Ramirez-Bon R (2018) Synthesis and photocatalysis study of multiwalled carbon nanotubes grown in a lead-based microspherical support fullerenes. Nanotub Carbon Nanostruct 26:370–378

    CAS  Google Scholar 

  • Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater 324:1854–1861

    CAS  Google Scholar 

  • Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259

    CAS  Google Scholar 

  • Spizzo F et al (2017) Synthesis of ferrofluids made of iron oxide nanoflowers: interplay between carrier fluid and magnetic properties. Nanomaterials 7:373

    Google Scholar 

  • Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V (2018) Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13:1221–1238

    CAS  Google Scholar 

  • Srivastava V, Kohout T, Sillanpää M (2016) Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater. J Environ Chem Eng 4:2922–2932

    CAS  Google Scholar 

  • Suharyadi E, Setiadi EA, Shabrina N, Kato T, Iwata S (2014) Magnetic properties and microstructures of polyethylene glycol (PEG)-coated cobalt ferrite (CoFe2O4) nanoparticles synthesized by coprecipitation method. Adv Mater Res 896:126–133

    Google Scholar 

  • Tai MF, Lai CW, Abdul Hamid SB (2016) Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability. J Nanomater 2016:8612505. https://doi.org/10.1155/2016/8612505

    Article  CAS  Google Scholar 

  • Tatarchuk T et al (2017) Structural, optical, and magnetic properties of Zn-doped CoFe 2 O 4 nanoparticles. Nanoscale Res Lett 12:141

    Google Scholar 

  • Vestal CR, Zhang ZJ (2002) Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties. Chem mater 14:3817–3822

    CAS  Google Scholar 

  • Viltužnik B, Košak A, Zub YL, Lobnik A (2013) Removal of Pb (II) ions from aqueous systems using thiol-functionalized cobalt-ferrite magnetic nanoparticles. J Sol-Gel Sci Technol 68:365–373

    Google Scholar 

  • Vinosha A, Jeronsia E, Raja K, Christina Fernandez A, Krishnan S, Das J (2016) Investigation of optical, electrical and magnetic properties of cobalt ferrite nanoparticles by naive co-precipitation technique. Optik 127:9917–9925

    Google Scholar 

  • Volatron J et al (2017a) Ferritin protein regulates the degradation of iron oxide nanoparticles. Small 13:1602030

    Google Scholar 

  • Volatron J et al (2017b) Physiological remediation of cobalt ferrite nanoparticles by ferritin. Sci Rep 7:40075

    CAS  Google Scholar 

  • Wahab A, Imran M, Ikram M, Naz M, Aqeel M, Rafiq A, Majeed H, Ali S (2019) Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl Nanosci 9(8):1823–1832

    CAS  Google Scholar 

  • Wang Z, Li Y, Viswan R, Hu B, Harris VG, Li J, Viehland D (2013) Engineered magnetic shape anisotropy in BiFeO3–CoFe2O4 self-assembled thin films. ACS Nano 7:3447–3456

    CAS  Google Scholar 

  • Xiao SH, Jiang WF, Li LY, Li XJ (2007) Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater Chem Phys 106:82–87

    CAS  Google Scholar 

  • Xue W et al (2018) Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomed 13:5719

    CAS  Google Scholar 

  • Zhang H, Wang J, Zeng Y, Wang G, Han S, Yang Z, Li B, Wang X, Gao J, Zheng L, Liu X (2020) Leucine-coated cobalt ferrite nanoparticles: synthesis, characterization and potential biomedical applications for drug delivery. Phy Lett A 384(24):126600

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Higher Education Commission Pakistan under NRPU project No. 6411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, K., Javed, Y., Jamil, Y. et al. Functionalized cobalt ferrite cubes: toxicity, interactions and mineralization into ferritin proteins. Appl Nanosci 10, 3659–3674 (2020). https://doi.org/10.1007/s13204-020-01484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01484-x

Keywords

Navigation