Skip to main content
Log in

Non-preemptive Scheduling in a Smart Grid Model and Its Implications on Machine Minimization

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study a scheduling problem arising in demand response management in smart grid. Consumers send in power requests with a flexible feasible time interval during which their requests can be served. The grid controller, upon receiving power requests, schedules each request within the specified interval. The electricity cost is measured by a convex function of the load in each timeslot. The objective is to schedule all requests with the minimum total electricity cost. Previous work has studied cases where jobs have unit power requirement and unit duration. We extend the study to arbitrary power requirement and duration, which has been shown to be NP-hard. We give the first online algorithm for the general problem and prove that the problem is fixed parameter tractable. We also show that the online algorithm is the best-possible in an asymptotically sense when the objective is to minimize the peak load. In addition, we observe that the classical non-preemptive machine minimization problem is a special case of the smart grid problem with min-peak objective and show that we can achieve the best-possible competitive ratio in an asymptotically sense when solving the non-preemptive machine minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alamdari, S., Biedl, T., Chan, T.M., Grant, E., Jampani, K.R., Keshav, S., Lubiw, A., Pathak, V.: Smart-grid electricity allocation via strip packing with slicing. In: WADS, pp. 25–36. Springer (2013)

  2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)

    Google Scholar 

  3. Azar, Y.: On-line load balancing. In: Online Algorithms, pp. 178–195. Springer (1998)

  4. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54(1), 1–39 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes and deadlines. J. Comb. Optim. 29(4), 739–749 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Burcea, M., Hon, W., Liu, H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for electricity cost in a smart grid. J. Sched. 19(6), 687–699 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Caron, S., Kesidis, G.: Incentive-based energy consumption scheduling algorithms for the smart grid. In: SmartGridComm, pp. 391–396. IEEE (2010)

  8. Chau, V., Feng, S., Thang, N.K.: Competitive algorithms for demand response management in smart grid. In: M.A. Bender, M. Farach-Colton, M.A. Mosteiro (eds.) LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10807, pp. 303–316. Springer (2018). https://doi.org/10.1007/978-3-319-77404-6_23

  9. Chen, C., Nagananda, K.G., Xiong, G., Kishore, S., Snyder, L.V.: A communication-based appliance scheduling scheme for consumer-premise energy management systems. IEEE Trans. Smart Grid 4(1), 56–65 (2013)

    Google Scholar 

  10. Chen, L., Megow, N., Schewior, K.: An \({O}(\log m)\)-competitive algorithm for online machine minimization. In: SODA, pp. 155–163. ACM (2016)

  11. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling jobs with interval constraints. In: FOCS, pp. 81–90. IEEE (2004)

  12. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling with release times and deadlines on a minimum number of machines. In: IFIP TCS, pp. 209–222. Springer (2004)

  13. Djurović, M.Ž., Milačić, A., Kršulja, M.: A simplified model of quadratic cost function for thermal generators. In: DAAAM, pp. 25–28. DA (2012)

  14. European Commission: Europen smartgrids technology platform. ftp://ftp.cordis.europa.eu/pub/fp7/energy/docs/smartgrids_en.pdf (2006)

  15. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Scheduling on a single machine under time-of-use electricity tariffs. Ann. OR 238(1–2), 199–227 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid: the new and improved power grid—a survey. IEEE Commun. Surv. Tutor. 14(4), 944–980 (2012)

    Google Scholar 

  17. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28 (2010)

    MathSciNet  Google Scholar 

  18. Feng, X., Xu, Y., Zheng, F.: Online scheduling for electricity cost in smart grid. In: COCOA, pp. 783–793. Springer (2015)

  19. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)

    MathSciNet  MATH  Google Scholar 

  20. Halin, R.: Some remarks on interval graphs. Combinatorica 2(3), 297–304 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power Energy Mag. 8(3), 60–65 (2010)

    Google Scholar 

  22. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7(2), 52–62 (2009)

    Google Scholar 

  23. Jansen, K., Land, F., Land, K.: Bounding the running time of algorithms for scheduling and packing problems. SIAM J. Discrete Math. 30(1), 343–366 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Kannberg, L., Chassin, D., DeSteese, J., Hauser, S., Kintner-Meyer, M., (U.S.), P.N.N.L., of Energy, U.S.D.: GridWise: The Benefits of a Transformed Energy System. Pacific Northwest National Laboratory (2003)

  25. Karbasioun, M.M., Shaikhet, G., Kranakis, E., Lambadaris, I.: Power strip packing of malleable demands in smart grid. In: ICC, pp. 4261–4265. IEEE (2013)

  26. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power grid: Scheduling of power demands for optimal energy management. In: e-Energy, pp. 41–50. ACM (2011)

  27. Krishnan, R.: Meters of tomorrow [in my view]. IEEE Power Energy Mag. 6(2), 94–96 (2008)

    Google Scholar 

  28. Li, H., Qiu, R.C.: Need-based communication for smart grid: When to inquire power price? In: GLOBECOM, pp. 1–5. IEEE (2010)

  29. Li, Z., Liang, Q.: Performance analysis of multiuser selection scheme in dynamic home area networks for smart grid communications. IEEE Trans. Smart Grid 4(1), 13–20 (2013)

    Google Scholar 

  30. Liu, F., Liu, H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart grid model. In: ISAAC, pp. 53:1–53:13. LIPIcs (2016)

  31. Llaria, A., Jiménez, J., Curea, O.: Study on communication technologies for the optimal operation of smart grids. Trans. Emerg. Telecommun. Technol. 25(10), 1009–1019 (2014)

    Google Scholar 

  32. Lockheed Martin: SEELoad™ Solution. http://www.lockheedmartin.co.uk/us/products/energy-solutions/seesuite/seeload.html

  33. Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3(3), 1244–1252 (2012)

    Google Scholar 

  34. Lui, T., Stirling, W., Marcy, H.: Get smart. IEEE Power Energy Mag. 8(3), 66–78 (2010)

    Google Scholar 

  35. Ma, C.Y.T., Yau, D.K.Y., Rao, N.S.V.: Scalable solutions of markov games for smart-grid infrastructure protection. IEEE Trans. Smart Grid 4(1), 47–55 (2013)

    Google Scholar 

  36. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand response management in the smart grid: a stackelberg game approach. IEEE Trans. Smart Grid 4(1), 120–132 (2013)

    Google Scholar 

  37. Masters, G.M.: Renewable and efficient electric power systems. Wiley, Hoboken (2013)

    Google Scholar 

  38. Mohsenian-Rad, A.H., Wong, V., Jatskevich, J., Schober, R.: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: ISGT, pp. 1–6. IEEE (2010)

  39. Mohsenian-Rad, A.H., Wong, V.W., Jatskevich, J., Schober, R., Leon-Garcia, A.: Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

    Google Scholar 

  40. REGEN Energy Inc: ENVIROGRID™ SMART GRID BUNDLE. http://www.regenenergy.com/press/announcing-the-envirogrid-smart-grid-bundle/

  41. Saha, B.: Renting a cloud. In: FSTTCS, pp. 437–448. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)

  42. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)

    Google Scholar 

  43. Samadi, P., Mohsenian-Rad, A.H., Schober, R., Wong, V.W., Jatskevich, J.: Optimal real-time pricing algorithm based on utility maximization for smart grid. In: SmartGridComm, pp. 415–420. IEEE (2010)

  44. Tang, S., Huang, Q., Li, X.Y., Wu, D.: Smoothing the energy consumption: Peak demand reduction in smart grid. In: INFOCOM, pp. 1133–1141. IEEE (2013)

  45. Toronto Hydro Corporation: Peaksaver Program. http://www.peaksaver.com/peaksaver_THESL.html

  46. UK Department of Energy & Climate Change: Smart grid: A more energy-efficient electricity supply for the UK. https://www.gov.uk/smart-grid-a-more-energy-efficient-electricity-supply-for-the-uk (2013)

  47. US Department of Energy: The Smart Grid: An Introduction. http://www.oe.energy.gov/SmartGridIntroduction.htm (2009)

  48. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS, pp. 374–382. IEEE (1995)

  49. Yaw, S., Mumey, B.: An exact algorithm for non-preemptive peak demand job scheduling. In: COCOA, pp. 3–12. Springer (2014)

  50. Yaw, S., Mumey, B., McDonald, E., Lemke, J.: Peak demand scheduling in the smart grid. In: SmartGridComm, pp. 770–775. IEEE (2014)

  51. Zpryme Research & Consulting: Power systems of the future: The case for energy storage, distributed generation, and microgrids. http://smartgrid.ieee.org/images/features/smart_grid_survey.pdf (2012)

Download references

Acknowledgements

Prudence W.H. Wong is partially supported by Networks Sciences and Technologies, University of Liverpool. Hsiang-Hsuan Liu is partially supported by a studentship from the University of Liverpool-National Tsing-Hua University Dual PhD programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper titled “Optimal Nonpreemptive Scheduling in a Smart Grid Model” appeared in Proceedings of the 27th International Symposium on Algorithms and Computation, ISAAC 2016 [30] and some results are improved in this version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FH., Liu, HH. & Wong, P.W.H. Non-preemptive Scheduling in a Smart Grid Model and Its Implications on Machine Minimization. Algorithmica 82, 3415–3457 (2020). https://doi.org/10.1007/s00453-020-00733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00733-3

Keywords

Navigation