Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 17, 2020

Recent advances in synthesis of organometallic complexes of indium

  • Hira Anwar , Rosenani A. Haque , Rahman Shah Zaib Saleem ORCID logo and Muhammad Adnan Iqbal ORCID logo EMAIL logo

Abstract

The indium complexes are being used in many applications like catalysis, optoelectronics, sensors, solar cells, biochemistry, medicine, infrared (IR) mirrors and thin-film transistors (TFTs). In organometallic complexes of indium, it forms different types of complexes with single, double, triple and tetra linkages by coordinating with numerous elements like C, N, O and S and also with some other elements like Se and Ru. So, the present study comprises all the possible ways to synthesize the indium complexes by reacting with different organic ligands; most of them are N-heterocyclic carbenes, amines, amides and phenols. The commonly used solvents for these syntheses are tetrahydrofuran, dichloromethane, toluene, benzene, dimethyl sulfoxide (DMSO) and water. According to the nature of the ligands, indium complexes were reported at different temperatures and stirring time. Because of their unique characteristics, the organometallic chemistry of group 13 metal indium complexes remains a subject of continuing interest in synthetic chemistry as well as material science.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC) Pakistan and University of Agriculture, Faisalabad for providing research environment and facilities to conduct their research work to serve our nation. The authors and the corresponding author Dr. M. Adnan Iqbal are very thankful to HEC-Pakistan for providing research grant NRPU-8396, Funder Id: http://dx.doi.org/10.13039/501100004681.

References

Abedi, A.; Safari, N.; Amani, V.; Khavasi, H.R. Indium(III) complexes containing bithiazole derivatives, chloride, methanol, and dimethyl sulfoxide: X-ray studies, spectroscopic characterization, and thermal analyses. J. Coord. Chem.2012, 65, 325–338.10.1080/00958972.2011.653638Search in Google Scholar

Aluthge, D.C.; Yan, E.X.; Ahn, J.M.; Mehrkhodavandi, P. Role of aggregation in the synthesis and polymerization activity of SalBinap indium alkoxide complexes. Inorg. Chem.2014, 53, 6828–6836.10.1021/ic500647jSearch in Google Scholar PubMed

Anderson, T.S.; Briand, G.G.; Brüning, R.; Decken, A.; Margeson, M.J.; Pickard, H.M.; Trevors, E.E. Synthesis, characterization and reactivity of (dithiolato)indium complexes. Polyhedron2017, 135, 101–108.10.1016/j.poly.2017.06.053Search in Google Scholar

Asadi, Z.; Asadi, M.; Shorkaei, M.R. Synthesis, characterization and DFT study of new water-soluble aluminum(III), gallium(III) and indium(III) Schiff base complexes: effect of metal on the binding propensity with bovine serum albumin in water. J. Iran. Chem. Soc.2016, 13, 429–442.10.1007/s13738-015-0751-4Search in Google Scholar

Baker, R.J.; Bettentrup, H.; Jones, C. The reactivity of primary and secondary amines, secondary phosphanes and N-heterocyclic carbenes towards group-13 metal(I) halides. Eur. J. Inorg. Chem.2003, 2003, 2446–2451.10.1002/ejic.200300068Search in Google Scholar

Bankole, O.M.; Britton, J.; Nyokong, T. Photophysical and non-linear optical behavior of novel tetra alkynyl terminated indium phthalocyanines: effects of the carbon chain length. Polyhedron2015, 88, 73–80.10.1016/j.poly.2014.12.020Search in Google Scholar

Bao, S.-J.; Liu, C.-Y.; Zhang, M.; Chen, X.-R.; Yu, H.; Li, H.-X.; Braunstein, P.; Lang, J.-P. Metal complexes with the zwitterion 4-(trimethylammonio)benzenethiolate: synthesis, structures and applications. Coord. Chem. Rev.2019, 397, 28–53.10.1016/j.ccr.2019.06.012Search in Google Scholar

Batchelor, R.J.; Einstein, F.W.; Gay, I.D.; Gu, J.H.; Johnston, B.D.; Pinto, B.M. Selenium coronands: synthesis and conformational analysis. J. Am. Chem. Soc.1989, 111, 6582–6591.10.1021/ja00199a017Search in Google Scholar

Bauer, M.E.; Seifert, T.; Burisch, M.; Krause, J.; Richter, N.; Gutzmer, J. Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: evidence for late-stage diffusion of indium into sphalerite. Miner. Deposita2019, 54, 175–192.10.1007/s00126-017-0773-1Search in Google Scholar

Bhalla, R.; Burt, J.; Hector, A.L.; Levason, W.; Luthra, S.K.; McRobbie, G.; Monzittu, F.M.; Reid, G. Complexes of aluminium, gallium and indium trifluorides with neutral oxygen donor ligands: synthesis, properties and reactions. Polyhedron2016, 106, 65–74.10.1016/j.poly.2015.12.032Search in Google Scholar

Bilgiçli, A.T.; Durdaşoglu, M.; Kırbaç, E.; Yarasir, M.N.; Kandaz, M. Metal ion sensing soluble α or β tetrasubstituted gallium and indium phthalocyanines: Synthesis, characterization, photochemistry and aggregation behaviors. Polyhedron2015, 100, 1–9.10.1016/j.poly.2015.07.035Search in Google Scholar

Blake, M.P.; Schwarz, A.D.; Mountford, P. Sulfonamide, phenolate, and directing ligand-free indium initiators for the ring-opening polymerization ofrac-lactide. Organometallics2011, 30, 1202–1214.10.1021/om101166sSearch in Google Scholar

Brandao, P.; Burke, A.J. Recent advances in the asymmetric catalytic synthesis of chiral 3-hydroxy and 3-aminooxindoles and derivatives: medicinally relevant compounds. Tetrahedron2018, 74, 4927–4957.10.1016/j.tet.2018.06.015Search in Google Scholar

Briand, G.G.; Cairns, S.A.; Decken, A.; Dickie, C.M.; Kostelnik, T.I.; Shaver, M.P. Strained metal bonding environments in methylindium dithiolates and their reactivity as initiators for the ring-opening polymerization of cyclic esters. J. Organomet. Chem.2016, 806, 22–32.10.1016/j.jorganchem.2016.01.020Search in Google Scholar

Broderick, E.M.; Guo, N.; Vogel, C.S.; Xu, C.; Sutter, J.r.; Miller, J.T.; Meyer, K.; Mehrkhodavandi, P.; Diaconescu, P.L. Redox control of a ring-opening polymerization catalyst. J. Am. Chem. Soc.2011, 133, 9278–9281.10.1021/ja2036089Search in Google Scholar PubMed

Buchard, À.; Platel, R.H.; Auffrant, A.; Le Goff, X.F., Le Floch, P.; Williams, C.K. Iminophosphorane neodymium(III) complexes as efficient initiators for lactide polymerization. Organometallics2010, 29, 2892–2900.10.1021/om1001233Search in Google Scholar

Buffet, J.-C.; Okuda, J.; Arnold, P.L. Chiral indium alkoxide complexes as initiators for the stereoselective ring-opening polymerization ofrac-lactide. Inorg. Chem.2009, 49, 419–426.10.1021/ic900740nSearch in Google Scholar PubMed

Çamur, M.; Ahsen, V.; Durmuş, M. The first comparison of photophysical and photochemical properties of non-ionic, ionic and zwitterionic gallium (III) and indium (III) phthalocyanines. J. Photochem. Photobiol. A: Chem.2011, 219, 217–227.10.1016/j.jphotochem.2011.02.014Search in Google Scholar

Chandrasekhar, V.; Goura, J.; Duthie, A. Molecular indium(III) phosphonates possessing ring and cage structures. Synthesis and structural characterization of [In2(t-BuPO3H)4(phen)2Cl2] and [In3(C5H9PO3)2(C5H9PO3H)4(phen)3]·NO3·3.5H2O. Inorg. Chem.2013, 52, 4819–4824.10.1021/ic3022485Search in Google Scholar PubMed

Cinar, M.E.; Schmittel, M. One-pot domino aldol reaction of indium enolates affording 6-deoxy-α-D,L-altropyranose derivatives: synthesis, mechanism, and computational results. J. Org. Chem.2015, 80, 8175–8182.10.1021/acs.joc.5b01256Search in Google Scholar PubMed

Cole, M.L.; Davies, A.J.; Jones, C.; Junk, P.C.; McKay, A.I.; Stasch, A. Aluminum and indium complexes derived from guanidines, triazenes, and amidines. Zeitschrift für anorganische und allgemeine Chemie2015, 641, 2233–2244.10.1002/zaac.201500556Search in Google Scholar

Dagorne, S.; Normand, M.; Kirillov, E.; Carpentier, J.-F. Gallium and indium complexes for ring-opening polymerization of cyclic ethers, esters and carbonates. Coord. Chem. Rev.2013, 257, 1869–1886.10.1016/j.ccr.2013.02.012Search in Google Scholar

Darwish, W.; Darwish, A.; E. Al-Ashkar. Synthesis and nonlinear optical properties of a novel indium phthalocyanine highly branched polymer. Polym. Adv. Technol.2015, 26, 1014–1019.10.1002/pat.3520Search in Google Scholar

Delbari, A.S.; Shahvelayati, A.S.; Jodaian, V.; Amani, V. Mononuclear and dinuclear indium(III) complexes containing methoxy and hydroxy-bridge groups, nitrate anion and 4,4′-dimethyl-2,2′-bipyridine ligand: synthesis, characterization, crystal structure determination, luminescent properties, and thermal analyses. J. Iran. Chem. Soc.2015, 12, 223–232.10.1007/s13738-014-0477-8Search in Google Scholar

Derrah, E.J.; Sircoglou, M.; Mercy, M.; Ladeira, S.; Bouhadir, G.; Miqueu, K.; Maron, L.; Bourissou, D. Original transition metal→indium interactions upon coordination of a triphosphine−indane. Organometallics2011, 30, 657–660.10.1021/om1011769Search in Google Scholar

Du, X.; Fan, R.; Wang, X.; Qiang, L.; Wang, P.; Gao, S.; Zhang, H.; Yang, Y.; Wang, Y. Combined effect of hydrogen bonding and π···π stacking interactions in the assembly of indium(III) metal–organic materials: structure-directing and aggregation-induced emission behavior. Cryst. Growth Des.2015, 15, 2402–2412.10.1021/acs.cgd.5b00198Search in Google Scholar

Enakieva, Y.Y.; Michalak, J.; Abdulaeva, I.A.; Volostnykh, M.V.; Stern, C.; Guilard, R.; A.G. Bessmertnykh-Lemeune, Gorbunova, Y.G.; Tsivadze, A.Y.; Kadish, K.M. General and scalable approach to A2B- and A2BC-type porphyrin phosphonate diesters. Eur. J. Org. Chem.2016, 2016, 4881–4892.10.1002/ejoc.201600857Search in Google Scholar

Enakieva, Y.Y.; Volostnykh, M.V.; Nefedov, S.E.; Kirakosyan, G.A.; Gorbunova, Y.G.; Tsivadze, A.Y.; Bessmertnykh-Lemeune, A.G.; Stern, C.; Guilard, R. Gallium(III) and indium(III) complexes with meso-monophosphorylated porphyrins: synthesis and structure. A first example of dimers formed by the self-assembly of meso-porphyrinylphosphonic acid monoester. Inorg. Chem.2017, 56, 3055–3070.10.1021/acs.inorgchem.6b03160Search in Google Scholar PubMed

Ewing, S.J.; Vaqueiro, P. Structural complexity in indium selenides prepared using bicyclic amines as structure-directing agents. Dalton Trans.2015, 44, 1592–1600.10.1039/C4DT02819HSearch in Google Scholar

Ferreira, I.P.; de Lima, G.M.; Paniago, E.B.; Rocha, W.R.; Takahashi, J.A.; Pinheiro, C.B.; Ardisson, J.D. Design, structural and spectroscopic elucidation, and the in vitro biological activities of new diorganotin dithiocarbamates. Eur. J. Med. Chem.2012, 58, 493–503.10.1016/j.ejmech.2012.10.021Search in Google Scholar PubMed

Ferreira, I.; de Lima, G.; Paniago, E.; Takahashi, J.; Pinheiro, C. Synthesis, characterization, and biocide activity of new dithiocarbamate-based complexes of In(III), Ga(III), and Bi(III) – Part III. J. Coord. Chem.2014, 67, 1097–1109.10.1080/00958972.2014.908188Search in Google Scholar

Fitzgerald, J.P.; Kaul, B.B.; Yee, G.T. Vanadium [dicyanoperfluorostilbene]2·yTHF: a molecule-based magnet with Tc≈205 K. Chem. Commun.2000, 49–50.10.1039/a907535fSearch in Google Scholar

Fliedel, C.; Schnee, G.; Avilés, T.; Dagorne, S. Group 13 metal (Al, Ga, In, Tl) complexes supported by heteroatom-bonded carbene ligands. Coord. Chem. Rev.2014, 275, 63–86.10.1016/j.ccr.2014.04.003Search in Google Scholar

Gebhard, M.; Hellwig, M.; Kroll, A.; Rogalla, D.; Winter, M.; Mallick, B.; Ludwig, A.; Wiesing, M.; Wieck, A.; Grundmeier, G. New amidinate complexes of indium(iii): promising CVD precursors for transparent and conductive In2O3 thin films. Dalton Trans.2017, 46, 10220–10231.10.1039/C7DT01280BSearch in Google Scholar PubMed

George, K.; Jura, M.; Levason, W.; Light, M.E.; Ollivere, L.P.; Reid, G. Unexpected reactivity and coordination in gallium(III) and indium(III) chloride complexes with geometrically constrained thio- and selenoether ligands. Inorg. Chem.2012, 51, 2231–2240.10.1021/ic202670vSearch in Google Scholar PubMed

Ghosh, S.; Gowda, R.R.; Jagan, R.; Chakraborty, D. Gallium and indium complexes containing the bis(imino)phenoxide ligand: synthesis, structural characterization and polymerization studies. Dalton Trans.2015, 44, 10410–10422.10.1039/C5DT00811ESearch in Google Scholar PubMed

Halevas, E.; Chatzigeorgiou, E.; Hadjispyrou, S.; Hatzidimitriou, A.; Psycharis, V.; Salifoglou, A. pH- and ligand structure-specific synthesis, structure-lattice dimensionality and spectroscopic fingerprint in novel binary In(III)-hydroxycarboxylic acid materials. Polyhedron2017, 127, 420–431.10.1016/j.poly.2016.08.003Search in Google Scholar

Hanhan, N.V.; Sahin, A.H.; Chang, T.W.; Fettinger, J.C.; Franz, A.K. Catalytic asymmetric synthesis of substituted 3‐Hydroxy‐2‐Oxindoles. Angew. Chem. Int. Ed. 2010, 49, 744–747.10.1002/anie.200904393Search in Google Scholar PubMed

Itazaki, M.; Ito, M.; Nakazawa, H. Synthesis, structure, and reactivity of ruthenium(0) indane complexes fac -[Ru(NCMe)3(CO)2(InX3)] (X=Cl, Br). Eur. J. Inorg. Chem.2015, 2015, 2033–2036.10.1002/ejic.201500112Search in Google Scholar

Jain, V.; Wadawale, A.; Kushwah, N.; Pal, M. Synthesis, structures and utility of organogallium and organoindium complexes with oxo and thio ligands. Russ. Chem. B2014, 63, 781–787.10.1007/s11172-014-0511-0Search in Google Scholar

Jung, E.A.; George, S.M.; Han, J.H.; Park, B.K.; Son, S.U.; Kim, C.G.; Chung, T.-M. Indium complexes bearing donor-functionalized alkoxide ligands as precursors for indium oxide thin films. J. Organomet. Chem.2017, 833, 43–49.10.1016/j.jorganchem.2017.01.019Search in Google Scholar

Kandaz, M.; Yarasir, M.N.; Koca, A. Selective metal sensor phthalocyanines bearing non-peripheral functionalities: Synthesis, spectroscopy, electrochemistry and spectroelectrochemistry. Polyhedron2009, 28, 257–262.10.1016/j.poly.2008.11.035Search in Google Scholar

Kapelski, A.; Okuda, J. J. Ring-opening polymerization ofrac- andmeso-lactide initiated by indium bis(phenolate) isopropoxy complexes. Polym. Sci. Part A: Polym. Chem.2013, 51, 4983–4991.10.1002/pola.26925Search in Google Scholar

Kaya, E.N.; Durmuş, M.; Bulut, M. The effects of substituents’ positions and variety of axial groups on the photochemical properties of coumarin substituted indium(III) phthalocyanines. J. Organomet. Chem.2014a, 774, 94–100.10.1016/j.jorganchem.2014.10.014Search in Google Scholar

Kaya, E.N.; Yuksel, F.; Özpınar, G.A.; Bulut, M.; Durmuş, M. 7-Oxy-3-(3,4,5-trimethoxyphenyl)coumarin substituted phthalonitrile derivatives as fluorescent sensors for detection of Fe3+ ions: experimental and theoretical study. Sensor. Actuat. B-Chem.2014b, 194, 377–388.10.1016/j.snb.2013.12.044Search in Google Scholar

Khavasi, H.R.; Abedi, A.; Amani, V.; Notash, B.; Safari, N. Synthesis, characterization and crystal structure determination of zinc (II) and mercury (II) complexes with 2,2′-dimethyl-4,4′-bithiazole. Polyhedron2008, 27, 1848–1854.10.1016/j.poly.2008.02.029Search in Google Scholar

Kim, H.Y.; Jung, E.A.; Mun, G.; Agbenyeke, R.E.; Park, B.K.; Park, J.-S.; Son, S.U.; Jeon, D.J.; Park, S.-H.K.; Chung, T.-M.; Han, J.H. Low-temperature growth of indium oxide thin film by plasma-enhanced atomic layer deposition using liquid dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for high-mobility thin film transistor application. ACS Appl. Mater. Inter.2016, 8, 26924–26931.10.1021/acsami.6b07332Search in Google Scholar

King, F.; Ross, M. Abundance distributions and dissociations of sputtered aluminum, gallium, and indium cluster ions. Chem. Phys. Lett.1989, 164, 131–136.10.1016/0009-2614(89)85004-3Search in Google Scholar

Kremer, A.B.; Osten, K.M.; Yu, I.; Ebrahimi, T.; Aluthge, D.C.; Mehrkhodavandi, P. Dinucleating ligand platforms supporting indium and zinc catalysts for cyclic ester polymerization. Inorg. Chem.2016, 55, 5365–5374.10.1021/acs.inorgchem.6b00358Search in Google Scholar PubMed

Kusaka, S.; Sakamoto, R.; Nishihara, H. Luminescent heteroleptic tris(dipyrrinato)indium(III) complexes. Inorg. Chem.2014, 53, 3275–3277.10.1021/ic500326uSearch in Google Scholar PubMed

Kushwah, N.; Pal, M.K.; Wadawale, A.; Sudarsan, V.; Manna, D.; Ghanty, T.K.; Jain, V.K. Synthesis, characterization, photoluminescence, and computational studies of monoorgano-gallium and -indium complexes containing dianionic tridentate ONE (E=O or S) Schiff bases. Organometallics2012, 31, 3836–3843.10.1021/om201030dSearch in Google Scholar

Li, S.-Y.; Liu, Z.-H. Synthesis, structure and property of a 3D heterometallic complex constructed by trinuclear [In2Co(OH)2(COO)4] cluster and BTC ligand. J. Clust. Sci.2015, 26, 1959–1970.10.1007/s10876-015-0889-3Search in Google Scholar

Lichtenthaler, M.R.; Stahl, F.; Kratzert, D.; Heidinger, L.; Schleicher, E.; Hamann, J.; Himmel, D.; Weber, S.; Krossing, I. Cationic cluster formation versus disproportionation of low-valent indium and gallium complexes of 2,2′-bipyridine. Nat. Commun.2015, 6, 8288.10.1038/ncomms9288Search in Google Scholar PubMed PubMed Central

Mageed, A.H. Chemistry of macrocyclic tetracarbene complexes: synthesis, structure, reactivity and catalytic application. J. Organomet. Chem.2019, 902, 120965.10.1016/j.jorganchem.2019.120965Search in Google Scholar

Masnovi, J.; Clark, E.B.; Hepp, A.F.; Schupp, J.D.; Fanwick, P.E. Preparation and structures of two mixed-ligand 4-methylpyridine indium bromide complexes. J. Mol. Struct.2016, 1105, 415–422.10.1016/j.molstruc.2015.10.049Search in Google Scholar

Maudoux, N.; Fang, J.; Roisnel, T.; Dorcet, V.; Maron, L.; J.-F. Carpentier, Sarazin, Y. Csp3—H bond activation with triel metals: indium and gallium zwitterions through internal hydride abstraction in rigid salan ligands. Chem. – A Eur. J.2014a, 20, 7706–7717.10.1002/chem.201402358Search in Google Scholar PubMed

Maudoux, N.; Roisnel, T.; Carpentier, J.-F.; Sarazin, Y. Aluminum, indium, and mixed yttrium–lithium complexes supported by a chiral binap-based fluorinated dialkoxide: structural features and heteroselective ROP of lactide. Organometallics2014b, 33, 5740–5748.10.1021/om500458gSearch in Google Scholar

Michelet, B.; Colard-Itté, J.-R.; Thiery, G.; Guillot, R.; Bour, C.; Gandon, V. Dibromoindium(iii) cations as a π-Lewis acid: characterization of [IPr·InBr2][SbF6] and its catalytic activity towards alkynes and alkenes. Chem. Commun.2015, 51, 7401–7404.10.1039/C5CC00740BSearch in Google Scholar PubMed

Moiseeva, E.O.; Platonova, Y.B.; Konev, D.V.; Trashin, S.A.; Tomilova, L.G. Electrochemical and spectroelectrochemical properties of tetra-tert-butylphthalocyanine indium(III). Mendeleev Commun.2019, 29, 212–214.10.1016/j.mencom.2019.03.033Search in Google Scholar

Momose, H.; Suzuki, H.; Kimura, M. Supramolecular complex formation of resorcin[4]arene-modified zinc phthalocyanine and fullerene. J. Porphyr. Phthalocya.2014, 18, 843–848.10.1142/S1088424614500618Search in Google Scholar

Normand, M.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F. Indium complexes of fluorinated dialkoxy-diimino salen-like ligands for ring-opening polymerization of rac-lactide: how does indium compare to aluminum? Organometallics2012a, 31, 1448–1457.10.1021/om200906eSearch in Google Scholar

Normand, M.; Kirillov, E.; Roisnel, T.; Carpentier, J.-F. Meerwein–ponndorf–verley-type reduction processes in aluminum and indium isopropoxide complexes of imino-phenolate ligands. Organometallics2012b, 31, 5511–5519.10.1021/om300481qSearch in Google Scholar

Osten, K.M.; Aluthge, D.C.; Patrick, B.O.; Mehrkhodavandi, P. Probing the role of secondary versus tertiary amine donor ligands for indium catalysts in lactide polymerization. Inorg. Chem.2014, 53, 9897–9906.10.1021/ic501529fSearch in Google Scholar PubMed

Pan, Y.; Yuan, X.; Jiang, L.; Yu, H.; Zhang, J.; Wang, H.; Guan, R.; Zeng, G. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J.2018, 354, 407–431.10.1016/j.cej.2018.08.028Search in Google Scholar

Pişkin, M.; Durmuş, M.; Bulut, M. Synthesis, characterization, photophysical and photochemical properties of 7-oxy-3-methyl-4-phenylcoumarin-substituted indium phthalocyanines. Inorg. Chim. A2011, 373, 107–116.10.1016/j.ica.2011.03.066Search in Google Scholar

Prashanth, B.; Bawari, D.; Singh, S. Heteroleptic iminophosphonamide In(III) complexes: source of mild lewis acid indium centers. ChemistrySelect2017, 2, 2039–2043.10.1002/slct.201700026Search in Google Scholar

Samedov, K.; Aksu, Y.; Driess, M. From molecular gallium and indium siloxide precursors to amorphous semiconducting transparent oxide layers for applications in thin-film field-effect transistors. ChemPlusChem2012, 77, 663–674.10.1002/cplu.201200086Search in Google Scholar

Sanusi, K.; Nyokong, T. Enhanced optical limiting behaviour of indium phthalocyanine derivatives when in solution or embedded in poly(acrylic acid) or poly(methyl methacrylate) polymers. J. Photochem. Photobiol. A: Chem.2015, 303, 44–52.10.1016/j.jphotochem.2015.02.003Search in Google Scholar

Schorn, W.; Grosse-Hagenbrock, D.; Oelkers, B.; Sundermeyer, J. Formazanido complexes of heavier group 13 elements aluminium, gallium, and indium. Dalton Trans.2016, 45, 1201–1207.10.1039/C5DT03906ASearch in Google Scholar PubMed

Seifert, T.; Sandmann, D. Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, Eastern Erzgebirge, Germany. Ore Geol. Rev.2006, 28, 1–31.10.1016/j.oregeorev.2005.04.005Search in Google Scholar

Sivagurunathan, G.S.; Ramalingam, K.; Rizzoli, C. Continuous Shape Measure of electronic effect free steric distortions in tris(dithiocarbamato)indium(III): synthesis, spectral, electrochemical, single crystal X-ray structural investigations and BVS calculations on tris(dithiocarbamato)indium(III) complexes. Polyhedron2014, 72, 96–102.10.1016/j.poly.2014.01.032Search in Google Scholar

Srivastava, S.; Fergason-Cantrell, E.A.; Nahas, R.I.; Lever, J.R. Synthesis and opioid receptor binding of indium (III) and [111In]-labeled macrocyclic conjugates of diprenorphine: novel ligands designed for imaging studies of peripheral opioid receptors. Tetrahedron2016, 72, 6127–6135.10.1016/j.tet.2016.08.015Search in Google Scholar PubMed PubMed Central

Stuzhin, P.A.; Goryachev, M.Y.; Ivanova, S.S.; Nazarova, A.; Pimkov, I.; Koifman, O.I. Perfluorinated porphyrazines 1: synthesis and UV-vis spectral study of perfluorinated octaphenylporphyrazine and its indium(III) complex, [MPA(F5Ph)8](M=2H, InIII(OH)). J. Porphyr. Phthalocya.2013, 17, 905–912.10.1142/S1088424613500892Search in Google Scholar

Tai, Y.-X.; Ji, Y.-M.; Lu, Y.-L.; Li, M.-X.; Wu, Y.-Y.; Han, Q.-X. Cadmium(II) and indium(III) complexes derived from 2-benzoylpyridine N(4)-cyclohexylthiosemicarbazone: synthesis, crystal structures, spectroscopic characterization and cytotoxicity. Synth. Met.2016, 219, 109–114.10.1016/j.synthmet.2016.05.015Search in Google Scholar

Thevenon, A.; Cyriac, A.; Myers, D.; White, A.J.; Durr, C.B.; Williams, C.K. Indium Catalysts for low-pressure CO2/epoxide ring-opening copolymerization: evidence for a mononuclear mechanism? J. Am. Chem. Soc.2018, 140, 6893–6903.10.1021/jacs.8b01920Search in Google Scholar PubMed

Vitas, N.; Vince, I.; Lugaro, M.; Andriyenko, O.; Gošić, M.; Rutten, R. On the solar abundance of indium. Mon. Not. R Astron. Soc.2008, 384, 370–375.10.1111/j.1365-2966.2007.12708.xSearch in Google Scholar

Wang, J.; Ganguly, R.; Yongxin, L.; Díaz, J.; Soo, H.S.; García, F. A multi-step solvent-free mechanochemical route to indium(iii) complexes. Dalton Trans.2016, 45, 7941–7946.10.1039/C6DT00978FSearch in Google Scholar

Wang, J.; Ganguly, R.; Yongxin, L.; Díaz, J.; Soo, H.S.; García, F. Synthesis and the optical and electrochemical properties of indium(III) bis(arylimino)acenaphthene complexes. Inorg. Chem.2017, 56, 7811–7820.10.1021/acs.inorgchem.7b00539Search in Google Scholar PubMed

Zhang, L.; Bai, F.; Gao, X.; Du, N.; Xing, Y.H.; Sun, L. Multifunctional indium complexes with fluorescent sensing and selective adsorption dye properties. N. J. Chem.2017, 41, 6883–6892.10.1039/C7NJ00680BSearch in Google Scholar

Received: 2020-03-14
Accepted: 2020-05-25
Published Online: 2020-06-17
Published in Print: 2020-09-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2020-0005/html
Scroll to top button